

Welcome to the HABApp documentation!

User Documentation

	Installation & Usage
	Virtual environment

	Docker

	Upgrading to a newer version of HABApp

	Command line arguments

	Usage with PyCharm

	Install a development version of HABApp

	About HABApp
	About

	HABApp architecture

	HABApp folder structure

	Integration with openHAB

	Integration with MQTT

	Configuration
	Description

	Example

	Configuration Reference

	Getting Started
	First rule

	A more generic rule

	Interacting with items

	Watch items for events

	Trigger an event when an item is constant

	Convenience functions

	Logging
	Configuration

	Example

	Custom log levels

	Logging to stdout

	Add custom filters to loggers

	Rule
	Interacting with items

	Interacting with events

	Scheduler

	Other tools and scripts

	How to properly use rules from other rule files

	All available functions

	Parameters
	Parameters

	Validation

	Create rules from Parameters

	Parameter classes

	HABApp
	Datatypes

	Items

	Events

	openHAB
	Additional configuration

	openHAB item types

	Interaction with a openHAB

	openHAB event types

	Transformations

	Textual thing configuration

	Example openHAB rules

	MQTT
	Interaction with the MQTT broker

	Rule Interface

	Mqtt item types

	Mqtt event types

	Example MQTT rule

	Advanced Usage
	HABApp Topics

	File properties

	Running Python code on startup

	Invoking openHAB actions

	Mocking openHAB items and events for tests

	asyncio
	async http

	util - helpers and utilities
	Functions

	Statistics

	Fade

	EventListenerGroup

	MultiModeItem

	Additional rule examples
	Using the scheduler

	Mirror openHAB events to a MQTT Broker

	Trigger an event when an item is constant

	Turn something off after movement

	Process Errors in Rules

	Tips & Tricks
	yml files

	openHAB

	Troubleshooting
	Warnings

	Errors

	Class reference
	Watches

	Scheduler

Indices and tables

	Index

	Module Index

Installation & Usage

Virtual environment

Installation

Hint

With openhabian the complete installation can be performed through the openhabian-config tool (option 2B).

HABApp will be installed into /opt/habapp, so it is the same as the installation described here.

Hint

On Windows use the python command instead of python3

	Navigate to the folder where the virtual environment shall be created (e.g.):

cd /opt

	Create virtual environment (this will create a new folder “habapp”):

python3 -m venv habapp

	Go into folder of virtual environment:

cd habapp

	Activate the virtual environment

Linux:

source bin/activate

Windows:

Scripts\activate

	Upgrade pip and setuptools:

python3 -m pip install --upgrade pip setuptools

	Install HABApp:

python3 -m pip install habapp

	Run HABAp:

habapp --config PATH_TO_CONFIGURATION_FOLDER

A good configuration folder for HABApp would be your openHAB configuration folder (e.g.
/opt/openhab/conf/habapp or /etc/openhab/habapp) because this is where your other configuration
folders are located (e.g. the items and sitemaps folder). Just make sure to manually create the folder habapp before the start.

Hint

After the installation take a look how to configure HABApp.
A default configuration will be created on the first start.

Upgrading

	Stop HABApp

	Activate the virtual environment

Navigate to the folder where HABApp is installed:

cd /opt/habapp

Activate the virtual environment

Linux:

source bin/activate

Windows:

Scripts\activate

	Run the following command in your activated virtual environment:

python3 -m pip install --upgrade habapp

	Start HABApp

	Observe the logs for errors in case there were changes

Autostart after reboot

Check where habapp is installed:

which habapp

To automatically start HABApp from the virtual environment after a reboot call:

nano /etc/systemd/system/habapp.service

and copy paste the following contents. If the user which is running openHAB is not “openhab” replace accordingly.
If your installation is not done in “/opt/habapp/bin” replace accordingly as well:

[Unit]
Description=HABApp
Documentation=https://habapp.readthedocs.io
After=network-online.target

[Service]
Type=simple
User=openhab
Group=openhab
UMask=002
ExecStart=/opt/habapp/bin/habapp -c PATH_TO_CONFIGURATION_FOLDER

[Install]
WantedBy=multi-user.target

Press Ctrl + x to save.

Now execute the following commands to enable autostart:

sudo systemctl --system daemon-reload
sudo systemctl enable habapp.service

It is now possible to start, stop, restart and check the status of HABApp with:

sudo systemctl start habapp.service
sudo systemctl stop habapp.service
sudo systemctl restart habapp.service
sudo systemctl status habapp.service

Error message while installing ujson

Under windows the installation of ujson may throw the following error but the download link is not working.
Several working alternatives can be found here [https://www.scivision.dev/python-windows-visual-c-14-required/].

Running setup.py install for ujson ... error
 ERROR: Complete output from command 'C:\Users\User\Desktop\HABapp\habapp\Scripts\python.exe' -u -c 'import setuptools, tokenize;__file__='"'"'C:\\Users\\User\\AppData\\Local\\Temp\\pip-install-4y0tobjp\\ujson\\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record 'C:\Users\User\AppData\Local\Temp\pip-record-6t2yo712\install-record.txt' --single-version-externally-managed --compile --install-headers 'C:\Users\User\Desktop\HABapp\habapp\include\site\python3.7\ujson':
 ERROR: Warning: 'classifiers' should be a list, got type 'filter'
 running install
 running build
 running build_ext
 building 'ujson' extension
 error: Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools": https://visualstudio.microsoft.com/downloads/
 --

Error message while installing ruamel.yaml

_ruamel_yaml.c:4:10: fatal error: Python.h: No such file or directory

Run the follwing command to fix it:

sudo apt install python3-dev

Docker

Image installation

Installation through docker [https://hub.docker.com/r/spacemanspiff2007/habapp] is available:

docker pull spacemanspiff2007/habapp:latest

The image supports the following environment variables.

	Variable

	Description

	TZ

	Timezone used for the container (e.g. Europe/Berlin).

	USER_ID

	User id at which HABApp will run (Optional, default: 9001)

	GROUP_ID

	Group id at which HABApp will run (Optional, default: USER_ID)

	HABAPP_HOME

	Directory in which the config resides (in subdirectory “config”) default: habapp)

Running image from command line

docker run --rm -it --name habapp \
 -v ${PWD}/habapp_config:/habapp/config \
 -e TZ=Europe/Berlin \
 -e USER_ID=9001 \
 -e GROUP_ID=9001 \
 spacemanspiff2007/habapp:latest

Parameters explained

	Parameter

	Description

	--rm

	Remove container when stopped

	-it

	Run in interactive mode (Optional) -> You can stop HABApp by pressing STRG+C and see stdout

	--name habapp

	Give the container an unique name to interact with it

	-e TZ=Europe/Berlin

	Set environment variable with timezone

	-e USER_ID=9001

	Set environment variable with wser id at which HABApp will run (Optional, default: 9001)

	-e GROUP_ID=9001

	Set environment variable with group id at which HABApp will run (Optional, default: USER_ID)

	spacemanspiff2007/habapp:latest

	Name of the image that will be run

Updating image from command line

docker stop habapp

docker pull spacemanspiff2007/habapp:latest

Updating image on Synology

To update your HABApp docker within Synology NAS, you just have to do the following:

On the Synology NAS just select “Download” with tag “latest” to download the new image.
It will overwrite the old one on the NAS.
Then stop the container. After selecting “Action” -> “Clear” on the HABapp container, the container is there, but without any content.
After starting the container again, everything should immediately work again.

Additional python libraries

If you want to use some additional python libraries you can do this by writing your own
Dockerfile using this image as base image. The HABApp image is based on the python-slim image
so you can install packages by using apt and pip.

Example Dockerfile installing scipy, pandas and numpy libraries:

FROM spacemanspiff2007/habapp:latest as buildimage

RUN set -eux; \
Install required build dependencies (Optional)
 apt-get update; \
 DEBIAN_FRONTEND=noninteractive apt-get install --no-install-recommends -y \
 build-essential; \
Prepare python packages
 pip3 wheel \
 --wheel-dir=/root/wheels \
 # Replace 'scipy pandas numpy' with your libraries
 scipy pandas numpy

FROM spacemanspiff2007/habapp:latest

COPY --from=buildimage /root/wheels /root/wheels

RUN set -eux; \
Install required runtime dependencies (Optional)
 apt-get update; \
 DEBIAN_FRONTEND=noninteractive apt-get install --no-install-recommends -y \
 bash; \
 apt-get clean; \
 rm -rf /var/lib/apt/lists/*; \
Install python packages and cleanup
 pip3 install \
 --no-index \
 --find-links=/root/wheels \
 # Replace 'scipy pandas numpy' with your libraries
 scipy pandas numpy; \
 rm -rf /root/wheels

Build image

docker build -t my_habapp_extended:latest .

Start image (same as with provided image but the image name is different).

docker run --rm -it --name habapp \
 -v ${PWD}/habapp_config:/habapp/config \
 -e TZ=Europe/Berlin \
 -e USER_ID=9001 \
 -e GROUP_ID=9001 \
 my_habapp_extended:latest

Upgrading to a newer version of HABApp

It is recommended to upgrade the installation on another machine. Configure your production instance in the configuration
and set the listen_only switch(es) in the configuration to True. Observe the logs for any errors.
This way if there were any breaking changes rules can easily be fixed before problems occur on the running installation.

Command line arguments

Execute habapp with “-h” to view possible command line arguments

habapp -h

usage: -c [-h] [-c CONFIG] [-wos WAIT_OS_UPTIME] [-b] [-di]

Start HABApp

options:
 -h, --help show this help message and exit
 -c CONFIG, --config CONFIG
 Path to configuration folder (where the config.yml is
 located)
 -wos WAIT_OS_UPTIME, --wait_os_uptime WAIT_OS_UPTIME
 Waits for the specified os uptime before starting
 HABApp
 -b, --benchmark Do a Benchmark based on the current config
 -di, --debug-info Print debug information

Usage with PyCharm

It’s recommended to use PyCharm as an IDE for writing rules. The IDE can provide auto complete and static checks
which will help write error free rules and vastly speed up development.

Type hints and checks

To enable type hints and checks HABApp needs to be installed in the python environment
that is currently used by PyCharm.
Ensure that the HABApp version for PyCharm matches the HABApp version that is currently deployed and running the rules.
It is recommended to create a new virtual environment when creating a new project for HABApp.

Go to Settings and view the current python environment settings.

[image: _images/pycharm_settings.png]
Install the HABApp package through the + symbol.
Once the installation was successful PyCharm will provide checks and hints.

[image: _images/pycharm_settings_install.png]

Start HABApp from PyCharm

It is possible to start HABApp directly from pycharm e.g. to debug things.
Open the run configurations.

[image: _images/pycharm_run.png]
Switch to Module name execution with the small dropdown arrow.
It’s still necessary to supply a configuration file which can be done in the Parameters line.

[image: _images/pycharm_run_settings.png]

After a click on “OK” HABApp can be run/debugged directly from pycharm.

It’s even possible to create breakpoints in rules and inspect all objects.

Install a development version of HABApp

To try out new features or test some functionality it’s possible to install a branch directly from github.
Installation works only in a virtual environment.

New features are typically first available in the Develop branch.

	Navigate to the folder where the virtual environment was created:

cd /opt/habapp

	Activate the virtual environment

Linux:

source bin/activate

Windows:

Scripts\activate

	Remove existing HABApp installation:

python3 -m pip uninstall habapp

	Install HABApp from the github branch (here Develop):

python3 -m pip install git+https://github.com/spacemanspiff2007/HABApp.git@Develop

	Run HABApp as usual (e.g. through systemctl) or manually with:

habapp --config PATH_TO_CONFIGURATION_FOLDER

About HABApp

About

HABApp is a Python rule engine for home automation.
It has local items, an event bus and can integrate external systems, e.g. openHAB and MQTT.
Rules can listen to events from the event bus. These events are generated by HABApp or by the external systems.
Additionally there is a scheduler available that makes time based triggering very easy.

HABApp architecture

[image: _images/architecture.png]

HABApp folder structure

[image: _images/folders.png]

Integration with openHAB

HABApp connects to the openHAB event stream and automatically updates the local openHAB items when an item in openHAB changes.
These item values are cached, so accessing and working with items in rules is very fast.
The events from openHAB are also mirrored to the internal event bus which means that triggering on these
events is also possible.

When HABApp connects to openHAB for the first time it will load all items/things from the openHAB instance and create local items.
The name of the local openHAB items is equal to the name in openHAB.

Posting updates, sending commands or any other openHAB interface call will issue a corresponding REST-API call to change openHAB.

Integration with MQTT

HABApp subscribes to the defined mqtt topics. For every MQTT message with the retain flag HABApp will automatically
create an MqttItem so these values can be accessed later. The name of the created item is the the mqtt topic.
All other messages will not automatically create an item but still create an event on the event bus.

MqttItems created by rules will automatically be updated with the latest value once a message is received.
These item values are cached, so accessing and working with items in rules is very fast.

Configuration

Description

Configuration is done through config.yml The parent folder of the file can be specified with -c PATH or --config PATH.
If nothing is specified the file config.yml is searched in the subdirectory HABApp in

	the current working directory

	the venv directory

	the user home

If the config does not yet exist in the folder a blank configuration will be created

Example

directories:
 logging: log # If the filename for the logfile in logging.yml is not absolute it will be placed in this directory
 rules: rules # All *.py files in this folder (and subfolders) will be loaded. Load order will be alphabetical by path.
 param: param # Optional, this is the folder where the parameter files will be created and loaded from
 config: config # Folder from which configuration files for openHAB will be loaded
 lib: lib # Custom modules, libraries and files can be placed there.
 # (!) Attention (!):
 # Don't create rule instances in files inside the lib folder! It will lead to strange behaviour.

location: # Specify the location where your HABApp instance is running
 latitude: 0.0 # The value is used to calculate the Sunrise/Sunset etc accordingly
 longitude: 0.0
 elevation: 0.0

openhab:
 ping:
 enabled: true # If enabled the configured item will show how long it takes to send an update from HABApp
 # and get the updated value back in milliseconds
 item: 'HABApp_Ping' # Name of the NumberItem that will show the ping
 interval: 10 # Seconds between two pings

 connection:
 url: http://localhost:8080
 user: ''
 password: ''

 general:
 listen_only: False # If True HABApp will not change any value on the openHAB instance.
 # Useful for testing rules from another machine.
 wait_for_openhab: True # If True HABApp will wait for items from the openHAB instance
 # before loading any rules on startup

mqtt:
 connection:
 client_id: HABApp
 host: ''
 port: 8883
 user: ''
 password: ''
 tls:
 enabled: false # Enable TLS for the connection
 insecure: false # Validate server hostname in server certificate
 ca cert: '' # Path to a CA certificate that will be treated as trusted
 # (e.g. when using a self signed certificate)

 subscribe: # Changes to Subscribe get picked up without restarting HABApp
 qos: 0 # Default QoS for subscribing
 topics:
 - '#' # Subscribe to this topic, qos is default QoS
 - ['my/topic', 1] # Subscribe to this topic with explicit QoS

 publish:
 qos: 0 # Default QoS when publishing values
 retain: false # Default retain flag when publishing values

 general:
 listen_only: False # If True HABApp will not publish any value to the broker.
 # Useful for testing rules from another machine.

It’s possible to use environment variables and files (e.g. docker secrets) in the configuration.
See the easyconfig documentation [https://easyconfig.readthedocs.io] for the exact syntax and examples.

Configuration Reference

All possible configuration options are described here. Not all entries are created by default in the config file
and one should take extra care when changing those entries.

	
settings ApplicationConfig

	Structure that contains the complete configuration

	
field directories: DirectoriesConfig [Optional]

	

	
field habapp: HABAppConfig [Optional]

	

	
field location: LocationConfig [Optional]

	

	
field mqtt: MqttConfig [Optional]

	

	
field openhab: OpenhabConfig [Optional]

	

Directories

	
settings DirectoriesConfig

	Configuration of directories that are used

	
field config: Optional[Path] = 'config'

	Folder from which configuration files (e.g. for textual thing configuration) will be loaded

	
field lib: Optional[Path] = 'lib'

	Folder where additional libraries can be placed

	
field logging: Path = 'log'

	Folder where the logs will be written to

	
field param: Optional[Path] = 'params'

	Folder from which the parameter files will be loaded

	
field rules: Path = 'rules'

	Folder from which the rule files will be loaded

	
classmethod ensure_folder(value)

	

Location

	
settings LocationConfig

	location where the instance is running. Is used to calculate Sunrise/Sunset.

	
field elevation: float = 0.0

	

	
field latitude: float = 0.0

	

	
field longitude: float = 0.0

	

MQTT

	
settings MqttConfig

	MQTT configuration

	
field connection: Connection [Optional]

	

	
field general: General [Optional]

	

	
field publish: Publish [Optional]

	

	
field subscribe: Subscribe [Optional]

	

Connection

	
settings Connection

	
	
field client_id: str = 'HABApp-WNmyaDGOwYPeh'

	ClientId that is used to uniquely identify this client on the mqtt broker.

	
field host: str = ''

	Connect to this host. Empty string (“”) disables the connection.

	
field password: str = ''

	

	
field port: int = 1883

	

	
field tls: TLSSettings [Optional]

	

	
field user: str = ''

	

TLS

	
settings TLSSettings

	
	
field ca cert: Path = ''

	Path to a CA certificate that will be treated as trusted

	
field enabled: bool = True

	Enable TLS for the connection

	
field insecure: bool = False

	Validate server hostname in server certificate

Subscribe

	
settings Subscribe

	
	
field qos: Literal[0, 1, 2] = 0

	Default QoS for subscribing

	
field topics: Tuple[Tuple[str, Optional[Literal[0, 1, 2]]], ...] = ('#',)

	

Publish

	
settings Publish

	
	
field qos: Literal[0, 1, 2] = 0

	Default QoS when publishing values

	
field retain: bool = False

	Default retain flag when publishing values

General

	
settings General

	
	
field listen_only: bool = False

	If True HABApp does not publish any value to the broker

Openhab

	
settings OpenhabConfig

	
	
field connection: Connection [Optional]

	

	
field general: General [Optional]

	

	
field ping: Ping [Optional]

	

Connection

	
settings Connection

	
	
field buffer: ByteSize = '128kib'

	Buffer for reading lines in the SSE event handler. This is the buffer that gets allocated for every(!) request and SSE message that the client processes. Increase only if you get error messages or disconnects e.g. if you use large images.

	
field password: str = ''

	

	
field topic filter: str = 'openhab/items/*,openhab/channels/*,openhab/things/*'

	Topic filter for subscribing to openHAB. This filter is processed by openHAB and only events matching this filter will be sent to HABApp.

	
field url: str = 'http://localhost:8080'

	Connect to this url. Empty string (“”) disables the connection.

	
field user: str = ''

	

	
field verify_ssl: bool = True

	Check certificates when using https

Ping

	
settings Ping

	
	
field enabled: bool = True

	If enabled the configured item will show how long it takes to send an update from HABApp and get the updated value back from openHAB in milliseconds

	
field interval: Union[int, float] = 10

	Seconds between two pings

	Constraints:

	
	ge = 0.1

	
field item: str = 'HABApp_Ping'

	Name of the Numberitem

General

	
settings General

	
	
field listen_only: bool = False

	If True HABApp does not change anything on the openHAB instance.

	
field min_start_level: int = 70

	Minimum openHAB start level to load items and listen to events

	Constraints:

	
	ge = 0

	le = 100

	
field wait_for_openhab: bool = True

	If True HABApp will wait for a successful openHAB connection before loading any rules on startup

HABApp

	
settings HABAppConfig

	HABApp internal configuration. Only change values if you know what you are doing!

	
field logging: LoggingConfig [Optional]

	

	
field thread pool: ThreadPoolConfig [Optional]

	

ThreadPool

	
settings ThreadPoolConfig

	
	
field enabled: bool = True

	When the thread pool is disabled HABApp will become an asyncio application.
Use only if you have experience developing asyncio applications!
If the thread pool is disabled using blocking calls in functions can and will break HABApp

	
field threads: Annotated[int] = 10

	Amount of threads to use for the executor

	Constraints:

	
	ge = 1

	le = 16

Logging

	
settings LoggingConfig

	
	
field flush every: float = 0.5

	Wait time in seconds before the buffer gets flushed again when it was empty

	Constraints:

	
	ge = 0.1

	
field use buffer: bool = True

	Automatically inject a buffer for the event log

Getting Started

It is really recommended to use a python IDE, for example PyCharm.
The IDE can provide auto complete and static checks
which will help you write error free rules and vastly speed up your development.

First start HABApp and keep it running. It will automatically load and update all rules which
are created or changed in the configured rules directory.
Loading and unloading of rules can be observed in the HABApp logfile.

It is recommended to use HABApp from the console for these examples so the print output can be observed.

First rule

Rules are written as classes that inherit from HABApp.Rule. Once the class gets instantiated the will run as
rules in the HABApp rule engine. So lets write a small rule which prints something.

import HABApp

Rules are classes that inherit from HABApp.Rule
class MyFirstRule(HABApp.Rule):
 def __init__(self):
 super().__init__()

 # Use run.at to schedule things directly after instantiation,
 # don't do blocking things in __init__
 self.run.soon(self.say_something)

 def say_something(self):
 print('That was easy!')

Rules
MyFirstRule()

That was easy!

A more generic rule

It is also possible to instantiate the rules with parameters.
This often comes in handy if there is some logic that shall be applied to different items.

import HABApp

class MyFirstRule(HABApp.Rule):
 def __init__(self, my_parameter):
 super().__init__()
 self.param = my_parameter

 self.run.soon(self.say_something)

 def say_something(self):
 print(f'Param {self.param}')

This is normal python code, so you can create Rule instances as you like
for i in range(2):
 MyFirstRule(i)
for t in ['Text 1', 'Text 2']:
 MyFirstRule(t)

Param 0
Param 1
Param Text 1
Param Text 2

Interacting with items

HABApp uses an internal item registry to store both openHAB items and locally
created items (only visible within HABApp). Upon start-up HABApp retrieves
a list of openHAB items and adds them to the internal registry.
Rules and HABApp derived libraries may add additional local items which can be used
to share states across rules and/or files.

Access

An item is created and added to the item registry through the corresponding class factory method

from HABApp.core.items import Item

This will create an item in the local (HABApp) item registry
item = Item.get_create_item("an-item-name", "a value")

Values

Posting values from the item will automatically create the events on the event bus.
This example will create an item in HABApp (locally) and post some updates to it.
To access items from openHAB use the correct openHAB item type (see the openHAB item description).

import HABApp
from HABApp.core.items import Item

class MyFirstRule(HABApp.Rule):
 def __init__(self):
 super().__init__()
 # Get the item or create it if it does not exist
 self.my_item = Item.get_create_item('Item_Name')

 self.run.soon(self.say_something)

 def say_something(self):
 # Post updates to the item through the internal event bus
 self.my_item.post_value('Test')
 self.my_item.post_value('Change')

 # The item value can be used in comparisons through this shortcut ...
 if self.my_item == 'Change':
 print('Item value is "Change"')
 # ... which is the same as this:
 if self.my_item.value == 'Change':
 print('Item.value is "Change"')

MyFirstRule()

[HABApp.Items] DEBUG | Added Item_Name (Item)
[HABApp.EventBus] INFO | Item_Name: <ValueUpdateEvent name: Item_Name, value: Test>
[HABApp.EventBus] INFO | Item_Name: <ValueChangeEvent name: Item_Name, value: Test, old_value: None>
[HABApp.EventBus] INFO | Item_Name: <ValueUpdateEvent name: Item_Name, value: Change>
[HABApp.EventBus] INFO | Item_Name: <ValueChangeEvent name: Item_Name, value: Change, old_value: Test>
Item value is "Change"
Item.value is "Change"

Timestamps

All items have two additional timestamps set which can be used to simplify rule logic.

	The time when the item was last updated

	The time when the item was last changed.

import HABApp
from HABApp.core.items import Item

class TimestampRule(HABApp.Rule):
 def __init__(self):
 super().__init__()
 # This item was created by another rule, that's why "get_item" is used
 self.my_item = Item.get_item('Item_Name')

 # Access of timestamps
 print(f'Last update: {self.my_item.last_update}')
 print(f'Last change: {self.my_item.last_change}')

TimestampRule()

Last update: 2022-08-20T12:16:00
Last change: 2022-08-20T10:30:00

Watch items for events

It is possible to watch items for changes or updates.
The listen_event function takes an instance of EventFilter which describes the kind of event that will be
passed to the callback.

import HABApp
from HABApp.core.items import Item
from HABApp.core.events import ValueUpdateEventFilter, ValueChangeEventFilter, ValueChangeEvent, ValueUpdateEvent

class MyFirstRule(HABApp.Rule):
 def __init__(self):
 super().__init__()
 # Get the item or create it if it does not exist
 self.my_item = Item.get_create_item('Item_Name')

 # Run this function whenever the item receives an ValueUpdateEvent
 self.listen_event(self.my_item, self.item_updated, ValueUpdateEventFilter())

 # If you already have an item you can use the more convenient method of the item
 # This is the recommended way to use the event listener
 self.my_item.listen_event(self.item_updated, ValueUpdateEventFilter())

 # Run this function whenever the item receives an ValueChangeEvent
 self.my_item.listen_event(self.item_changed, ValueChangeEventFilter())

 # the function has 1 argument which is the event
 def item_updated(self, event: ValueUpdateEvent):
 print(f'{event.name} updated value: "{event.value}"')
 print(f'Last update of {self.my_item.name}: {self.my_item.last_update}')

 def item_changed(self, event: ValueChangeEvent):
 print(f'{event.name} changed from "{event.old_value}" to "{event.value}"')
 print(f'Last change of {self.my_item.name}: {self.my_item.last_change}')

MyFirstRule()

Item_Name updated value: "Changed value"
Last update of Item_Name: 2023-09-12T04:08:39.696495
Item_Name updated value: "Changed value"
Last update of Item_Name: 2023-09-12T04:08:39.696495
Item_Name changed from "Some value" to "Changed value"
Last change of Item_Name: 2023-09-12T04:08:39.696495

Trigger an event when an item is constant

import HABApp
from HABApp.core.items import Item
from HABApp.core.events import ItemNoChangeEvent

class MyFirstRule(HABApp.Rule):
 def __init__(self):
 super().__init__()
 # Get the item or create it if it does not exist
 self.my_item = Item.get_create_item('Item_Name')

 # This will create an event if the item is 10 secs constant
 watcher = self.my_item.watch_change(10)

 # this will automatically listen to the correct event
 watcher.listen_event(self.item_constant)

 # To listen to all ItemNoChangeEvent/ItemNoUpdateEvent independent of the timeout time use
 # self.listen_event(self.my_item, self.item_constant, watcher.EVENT)

 def item_constant(self, event: ItemNoChangeEvent):
 print(f'{event}')

MyFirstRule()

<ItemNoChangeEvent name: Item_Name, seconds: 10>

Convenience functions

HABApp provides some convenience functions which make the rule creation easier and reduce boiler plate code.

post_value_if

post_value_if will post a value to the item depending on its current state.
There are various comparisons available (see documentation)
Something similar is available for openHAB items (oh_post_update_if)

import HABApp
from HABApp.core.items import Item

class MyFirstRule(HABApp.Rule):
 def __init__(self):
 super().__init__()
 # Get the item or create it if it does not exist
 self.my_item = Item.get_create_item('Item_Name')

 self.run.soon(self.say_something)

 def say_something(self):

 # This construct
 if self.my_item != 'overwrite value':
 self.my_item.post_value('Test')

 # ... is equivalent to
 self.my_item.post_value_if('Test', not_equal='overwrite value')

 # This construct
 if self.my_item == 'overwrite value':
 self.my_item.post_value('Test')

 # ... is equivalent to
 self.my_item.post_value_if('Test', equal='overwrite value')

MyFirstRule()

Logging

Configuration

Configuration of logging is done through the logging.yml.
During the first start a default configuration will be created.
It is recommended to extend the default configuration.

The complete description of the file format can be found here [https://docs.python.org/3/library/logging.config.html?highlight=dictconfig#configuration-dictionary-schema],
but the format should be pretty straight forward.

Hint

It is highly recommended to use an absolute path as a file name, at least for the HABApp.log

That way even if the HABApp configuration is invalid HABApp can still log the errors that have occurred.

e.g.: /HABApp/logs/habapp.log or c:\HABApp\logs\habapp.log

Example

Usage

The logging library is the standard python library and an extensive description can be found
in the official documentation [https://docs.python.org/3/library/logging.html].

import logging

import HABApp

log = logging.getLogger('MyRule')

class MyLoggingRule(HABApp.Rule):

 def __init__(self):
 super().__init__()

 # different levels are available
 log.debug('Debug Message')
 log.info('Info Message')
 log.warning('Warning Message')
 log.error('Error Message')

MyLoggingRule()

To make the logging output work properly an output file and an output format has to be configured for the logger.
The logging library supports a logging hierarchy so the configuration for the logger MyRule will also work
logger MyRule.SubLogger and MyRule.SubLogger.SubSubLogger.

The output of our logger from the example shall be in a separate file so we add a new output file
to the file configuration under handlers in the logging.yml.

 handlers:
 ...

 MyRuleHandler: # <-- This is the name of the handler
 class: HABApp.core.lib.handler.MidnightRotatingFileHandler
 filename: 'c:\HABApp\Logs\MyRule.log'
 maxBytes: 10_000_000
 backupCount: 3

 formatter: HABApp_format # use this format
 level: DEBUG

The output file is now available for logging but the configuration for the logger is still missing.
It has to be added under loggers and reference the handler we created

 loggers:
 ...

 MyRule: # <-- Name of the logger
 level: DEBUG # <-- minimum Logging level, e.g. use INFO if you don't want the output of log.debug()
 handlers:
 - MyRuleHandler # This logger uses the MyRuleHandler
 propagate: False

Now the logger works as expected and writes all output to the new file.

Full Example configuration

Configuration of the available output formats

formatters:
 HABApp_format:
 format: '[%(asctime)s] [%(name)25s] %(levelname)8s | %(message)s'

Configuration of the available file handlers (output files)

handlers:
 HABApp_default:
 class: HABApp.core.lib.handler.MidnightRotatingFileHandler
 filename: 'HABApp.log'
 maxBytes: 10_000_000
 backupCount: 3

 formatter: HABApp_format # use the specified formatter (see above)
 level: DEBUG

 MyRuleHandler:
 class: HABApp.core.lib.handler.MidnightRotatingFileHandler
 filename: 'c:\HABApp\Logs\MyRule.log' # absolute filename is recommended
 maxBytes: 10_000_000
 backupCount: 3

 formatter: HABApp_format # use the specified formatter (see above)
 level: DEBUG

Configuration of all available loggers and their configuration

loggers:
 HABApp:
 level: DEBUG
 handlers:
 - HABApp_default # This logger does log with the default handler
 propagate: False

 MyRule: # <-- Name of the logger
 level: DEBUG
 handlers:
 - MyRuleHandler # This logger uses the MyRuleHandler
 propagate: False

Custom log levels

It is possible to add custom log levels or rename existing levels.
This is possible via the optional levels entry in the logging configuration file.

levels:
 WARNING: WARN # Changes WARNING to WARN
 5: TRACE # Adds a new loglevel "TRACE" with value 5

formatters:
 HABApp_format:
...

Logging to stdout

The following handler writes to stdout

handlers:
 StdOutHandler:
 class: logging.StreamHandler
 stream: ext://sys.stdout

 formatter: HABApp_format
 level: DEBUG

Add custom filters to loggers

It’s possible to filter out certain parts of log files with a
filter [https://docs.python.org/3/library/logging.html?highlight=logging%20filter#logging.Filter].
The recommendation is to create the filter during startup.

This example ignores all messages for the HABApp.EventBus logger that contain MyIgnoredString.

import logging

False to skip, True to log record
def filter(record: logging.LogRecord) -> bool:
 return 'MyIgnoredString' not in record.msg

logging.getLogger('HABApp.EventBus').addFilter(filter)

Note

Regular expressions for a filter should be compiled outside of the filter function with re.compile
for performance reasons.

A simple subtext search however will always have way better performance.

Rule

Interacting with items

Items are like variables. They have a name and a value (which can be anything).
Items from openHAB use the item name from openHAB and get created when HABApp successfully connects to
openHAB or when the openHAB configuration changes.
Items from MQTT use the topic as item name and get created as soon as a message gets processed.

Some item types provide convenience functions, so it is advised to always set the correct item type.

The preferred way to get and create items is through the class factories get_item
and get_create_item since this ensures the proper item class and provides type hints when
using an IDE!

Example:

from HABApp.core.items import Item
my_item = Item.get_create_item('MyItem', initial_value=5) # This will create the item if it does not exist
my_item = Item.get_item('MyItem') # This will raise an exception if the item is not found
print(my_item)

If an item value gets set there will be a ValueUpdateEvent on the event bus.
If it changes there will be additionally a ValueChangeEvent, too.

It is possible to check the item value by comparing it

from HABApp.core.items import Item
my_item = Item.get_item('MyItem')

this works
if my_item == 5:
 pass # do something

and is the same as this
if my_item.value == 5:
 pass # do something

An overview over the item types can be found on the HABApp item section,
the openHAB item section and the the mqtt item section

Interacting with events

It is possible to listen to events through the listen_event() function.
The passed function will be called as soon as an event occurs and the event will pe passed as an argument
into the function.

There is the possibility to reduce the function calls to a certain event type with an additional event filter
(typically ValueUpdateEventFilter or ValueChangeEventFilter).

An overview over the events can be found on the HABApp event section,
the openHAB event section and the the MQTT event section

Example

from HABApp import Rule
from HABApp.core.events import ValueChangeEvent, ValueUpdateEvent, ValueChangeEventFilter, ValueUpdateEventFilter
from HABApp.core.items import Item

class MyRule(Rule):
 def __init__(self):
 super().__init__()
 self.listen_event('MyOpenhabItem', self.on_change, ValueChangeEventFilter()) # trigger only on ValueChangeEvent
 self.listen_event('My/MQTT/Topic', self.on_update, ValueUpdateEventFilter()) # trigger only on ValueUpdateEvent

 # If you already have an item you can and should use the more convenient method of the item
 # to listen to the item events
 my_item = Item.get_item('MyItem')
 my_item.listen_event(self.on_change, ValueUpdateEventFilter())

 def on_change(self, event: ValueChangeEvent):
 assert isinstance(event, ValueChangeEvent), type(event)

 def on_update(self, event: ValueUpdateEvent):
 assert isinstance(event, ValueUpdateEvent), type(event)

MyRule()

Additionally there is the possibility to filter not only on the event type but on the event values, too.
This can be achieved by passing the value to the event filter.
There are convenience Filters (e.g. ValueUpdateEventFilter and
ValueChangeEventFilter) for the most used event types that provide type hints.

NoEventFilter

	
class NoEventFilter

	Triggers on all events

EventFilter

	
class EventFilter(event_class, **kwargs)

	Triggers on event types and optionally on their values, too

ValueUpdateEventFilter

	
class ValueUpdateEventFilter(value=<MISSING>)

	

ValueChangeEventFilter

	
class ValueChangeEventFilter(value=<MISSING>, old_value=<MISSING>)

	

AndFilterGroup

	
class AndFilterGroup(*args)

	All child filters have to match

OrFilterGroup

	
class OrFilterGroup(*args)

	Only one child filter has to match

Example

Example

from HABApp import Rule
from HABApp.core.events import EventFilter, ValueUpdateEventFilter, ValueUpdateEvent, OrFilterGroup
from HABApp.core.items import Item

class MyRule(Rule):
 def __init__(self):
 super().__init__()
 my_item = Item.get_item('MyItem')

 # This will only call the callback for ValueUpdateEvents
 my_item.listen_event(self.on_val_my_value, ValueUpdateEventFilter())

 # This will only call the callback for ValueUpdateEvents where the value==my_value
 my_item.listen_event(self.on_val_my_value, ValueUpdateEventFilter(value='my_value'))

 # This is the same as above but with the generic filter
 my_item.listen_event(self.on_val_my_value, EventFilter(ValueUpdateEvent, value='my_value'))

 # trigger if the value is 1 or 2 by using both filters with or
 my_item.listen_event(
 self.value_1_or_2,
 OrFilterGroup(
 ValueUpdateEventFilter(value=1), ValueUpdateEventFilter(value=2)
)
)

 def on_val_my_value(self, event: ValueUpdateEvent):
 assert isinstance(event, ValueUpdateEvent), type(event)

 def value_1_or_2(self, event: ValueUpdateEvent):
 assert isinstance(event, ValueUpdateEvent), type(event)

MyRule()

Scheduler

With the scheduler it is easy to call functions in the future or periodically.
Do not use time.sleep but rather self.run.at.
Another very useful function is self.run.countdown as it can simplify many rules!

	Function

	Description

	soon()

	Run the callback as soon as possible (typically in the next second).

	at()

	Run the callback in x seconds or at a specified time.

	countdown()

	Run a function after a time has run down

	every()

	Run a function periodically

	every_minute()

	Run a function every minute

	every_hour()

	Run a function every hour

	on_every_day()

	Run a function at a specific time every day

	on_workdays()

	Run a function at a specific time on workdays

	on_weekends()

	Run a function at a specific time on weekends

	on_day_of_week()

	Run a function at a specific time on specific days of the week

	on_sun_dawn()

	Run a function on dawn

	on_sunrise()

	Run a function on sunrise

	on_sunset()

	Run a function on sunset

	on_sun_dusk()

	Run a function on dusk

All functions return an instance of ScheduledCallbackBase

	
class HABAppSchedulerView(context)

	
	
at(time, callback, *args, **kwargs)

	Create a a job that will run at a specified time.

	Parameters:

	
	time (Union[None, datetime, timedelta, time, int]) –

	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	OneTimeJob

	Returns:

	Created job

	
countdown(expire_time, callback, *args, **kwargs)

	Run a job a specific time after calling reset() of the job.
Another subsequent call to reset() will start the countdown again.

	Parameters:

	
	expire_time (Union[timedelta, float, int]) – countdown in seconds or a timedelta obj

	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	CountdownJob

	Returns:

	Created job

	
every(start_time, interval, callback, *args, **kwargs)

	Create a job that will run at a specific interval.

	Parameters:

	
	start_time (Union[None, datetime, timedelta, time, int]) – First execution time

	interval (Union[int, float, timedelta]) – Interval how the job is repeated

	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	ReoccurringJob

	Returns:

	Created job

	
on_day_of_week(time, weekdays, callback, *args, **kwargs)

	Create a job that will run at a certain time on certain days during the week.

	Parameters:

	
	time (Union[time, datetime]) – Time when the job will run

	weekdays (Union[str, Iterable[Union[str, int]]]) – Day group names (e.g. 'all', 'weekend', 'workdays'), an iterable with
day names (e.g. ['Mon', 'Fri']) or an iterable with the isoweekday values
(e.g. [1, 5]).

	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	DayOfWeekJob

	Returns:

	Created job

	
on_every_day(time, callback, *args, **kwargs)

	Create a job that will run at a certain time of day

	Parameters:

	
	time (Union[time, datetime]) – Time when the job will run

	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	DayOfWeekJob

	
on_sunrise(callback, *args, **kwargs)

	Create a job that will run on sunrise, requires a location to be set

	Parameters:

	
	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	SunriseJob

	Returns:

	Created job

	
on_sunset(callback, *args, **kwargs)

	Create a job that will run on sunset, requires a location to be set

	Parameters:

	
	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	SunsetJob

	Returns:

	Created job

	
on_sun_dawn(callback, *args, **kwargs)

	Create a job that will run on dawn, requires a location to be set

	Parameters:

	
	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	DawnJob

	Returns:

	Created job

	
on_sun_dusk(callback, *args, **kwargs)

	Create a job that will run on dusk, requires a location to be set

	Parameters:

	
	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	DuskJob

	Returns:

	Created job

	
soon(callback, *args, **kwargs)

	Run the callback as soon as possible.

	Parameters:

	
	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	OneTimeJob

	
every_minute(callback, *args, **kwargs)

	Picks a random second and runs the callback every minute

	Parameters:

	
	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	ReoccurringJob

	
on_weekends(time, callback, *args, **kwargs)

	Create a job that will run at a certain time on weekends.

	Parameters:

	
	time (Union[time, datetime]) – Time when the job will run

	callback – Function which will be called

	args – Positional arguments that will be passed to the function

	kwargs – Keyword arguments that will be passed to the function

	Return type:

	DayOfWeekJob

	Returns:

	Created job

	
on_workdays(time, callback, *args, **kwargs)

	Create a job that will run at a certain time on workdays.

	Parameters:

	
	time (Union[time, datetime]) – Time when the job will run

	callback – Function which will be called

	args – Positional arguments that will be passed to the function

	kwargs – Keyword arguments that will be passed to the function

	Return type:

	DayOfWeekJob

	Returns:

	Created job

	
every_hour(callback, *args, **kwargs)

	Picks a random minute and second and run the callback every hour

	Parameters:

	
	callback (Callable[[ParamSpec(HINT_CB_P)], Any]) – Function which will be called

	args (ParamSpecArgs) – Positional arguments that will be passed to the function

	kwargs (ParamSpecKwargs) – Keyword arguments that will be passed to the function

	Return type:

	ReoccurringJob

Other tools and scripts

HABApp provides convenience functions to run other tools and scripts. The working directory for the
new process is by default the folder of the HABApp configuration file.

Running tools

External tools can be run with the execute_subprocess() function.
Once the process has finished the callback will be called with the captured output of the process.
Example:

import HABApp

class MyExecutionRule(HABApp.Rule):

 def __init__(self):
 super().__init__()

 self.execute_subprocess(self.func_when_finished, 'path_to_program', 'arg1_for_program')

 def func_when_finished(self, process_output: str):
 print(process_output)

MyExecutionRule()

Running python scripts or modules

Python scripts can be run with the execute_python() function.
The working directory for a script is by default the folder of the script.
Once the script or module has finished the callback will be called with the captured output of the module/script.
Example:

import HABApp

class MyExecutionRule(HABApp.Rule):

 def __init__(self):
 super().__init__()

 self.execute_python(self.func_when_finished, '/path/to/python/script.py', 'arg1_for_script')

 def func_when_finished(self, module_output: str):
 print(module_output)

MyExecutionRule()

FinishedProcessInfo

It’s possible to get the raw process output instead of just the captured string. See
execute_subprocess() or execute_python() on how to enable it.

	
class FinishedProcessInfo(returncode, stdout, stderr)

	Information about the finished process.

	Variables:

	
	returncode (int) – Return code of the process

	stdout (Optional[str]) – Standard output of the process or None

	stderr (Optional[str]) – Error output of the process or None

How to properly use rules from other rule files

This example shows how to properly get a rule during runtime and execute one of its function.
With the proper import and type hint this method provides syntax checks and auto complete.

Rule instances can be accessed by their name (typically the class name). In the HABApp.log you can see the name when the rule is loaded.
If you want to assign a custom name, you can change the rule name easily by assigning it to self.rule_name in __init__.

Important

Always look up rule every time, never assign to a class member!
The rule might get reloaded and then the class member will still point to the old unloaded instance.

rule_a.py:

import HABApp

class ClassA(HABApp.Rule):
 ...

 def function_a(self):
 ...

ClassA()

rule_b.py:

import HABApp
import typing

if typing.TYPE_CHECKING: # This is only here to allow
 from .rule_a import ClassA # type hints for the IDE

class ClassB(HABApp.Rule):
 ...

 def function_b(self):

 r = self.get_rule('ClassA') # type: ClassA
 # The comment "# type: ClassA" will signal the IDE that the value returned from the
 # function is an instance of ClassA and thus provide checks and auto complete.

 # this calls the function on the instance
 r.function_a()

All available functions

	
class Rule

	
	Variables:

	
	async_http – Async http connections

	mqtt – MQTT interaction

	openhab – openhab interaction

	oh – short alias for openhab

	
on_rule_loaded()

	Override this to implement logic that will be called when the rule and the file has been successfully loaded

	
on_rule_removed()

	Override this to implement logic that will be called when the rule has been unloaded.

	
post_event(name, event)

	Post an event to the event bus

	Parameters:

	
	name (Union[TypeVar(HINT_ITEM_OBJ, bound= BaseItem), str]) – name or item to post event to

	event (Any) – Event class to be used (must be class instance)

	Returns:

	

	
listen_event(name, callback, event_filter=None)

	Register an event listener

	Parameters:

	
	name (Union[TypeVar(HINT_ITEM_OBJ, bound= BaseItem), str]) – item or name to listen to

	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
execute_subprocess(callback, program, *args, additional_python_path=None, capture_output=True, raw_info=False, **kwargs)

	Run another program

	Parameters:

	
	callback – Function that will be called when the process has finished.
First parameter takes a str when raw_info is False (default) else
an instance of FinishedProcessInfo

	program (Union[str, Path]) – python module (path to file) or python package

	args (Union[str, Path]) – arguments passed to the module or to package

	raw_info (bool) – False: Return only the textual process output.
In case of failure (return code != 0) a log entry and an error event will be created.
This is the default and should be fine for almost all use cases.

True: The callback will always be called with an
instance of FinishedProcessInfo.

	capture_output (bool) – Capture program output, set to False to only capture the return code

	additional_python_path (Optional[Iterable[Union[str, Path]]]) – additional folders which will be added to the env variable PYTHONPATH

	kwargs – Additional kwargs that will be passed to asyncio.create_subprocess_exec

	Returns:

	

	
execute_python(callback, module_or_package, *args, additional_python_path=None, capture_output=True, raw_info=False, **kwargs)

	Run a python module or package as a new process. The python environment that is used to run HABApp will be
to run the module or package.

	Parameters:

	
	callback – Function that will be called when the process has finished.
First parameter takes a str when raw_info is False (default) else
an instance of FinishedProcessInfo

	module_or_package (Union[str, Path]) – python module (path to file) or python package (just the name)

	args (Union[str, Path]) – arguments passed to the module or to package

	raw_info (bool) – False: Return only the textual process output.
In case of failure (return code != 0) a log entry and an error event will be created.
This is the default and should be fine for almost all use cases.

True: The callback will always be called with an
instance of FinishedProcessInfo.

	capture_output (bool) – Capture program output, set to False to only capture the return code

	additional_python_path (Optional[Iterable[Union[str, Path]]]) – additional folders which will be added to the env variable PYTHONPATH

	kwargs – Additional kwargs that will be passed to asyncio.create_subprocess_exec

	Returns:

	

	
static get_items(type=None, name=None, tags=None, groups=None, metadata=None, metadata_value=None)

	Search the HABApp item registry and return the found items.

	Parameters:

	
	type (Union[Tuple[Type[TypeVar(HINT_ITEM_OBJ, bound= BaseItem)], ...], Type[TypeVar(HINT_ITEM_OBJ, bound= BaseItem)], None]) – item has to be an instance of this class

	name (Union[str, Pattern[str], None]) – str (will be compiled) or regex that is used to search the Name

	tags (Union[str, Iterable[str], None]) – item must have these tags (will return only instances of OpenhabItem)

	groups (Union[str, Iterable[str], None]) – item must be a member of these groups (will return only instances of OpenhabItem)

	metadata (Union[str, Pattern[str], None]) – str (will be compiled) or regex that is used to search the metadata (e.g. ‘homekit’)

	metadata_value (Union[str, Pattern[str], None]) – str (will be compiled) or regex that is used to search the metadata value
(e.g. ‘TargetTemperature’)

	Return type:

	Union[List[TypeVar(HINT_ITEM_OBJ, bound= BaseItem)], List[BaseItem]]

	Returns:

	Items that match all the passed criteria

Parameters

Parameters

Parameters are values which can easily be changed without having to reload the rules.
Values will be picked up during runtime as soon as they get edited in the corresponding file.
If the file doesn’t exist yet it will automatically be generated in the configured param folder.
Parameters are perfect for boundaries (e.g. if value is below param switch something on).
Currently there are is Parameter and DictParameter available.

from HABApp import Rule, Parameter
from HABApp.core.events import ValueChangeEventFilter

class MyRuleWithParameters(Rule):
 def __init__(self):
 super().__init__()

 # construct parameter once, default_value can be anything
 self.min_value = Parameter('param_file_testrule', 'min_value', default_value=10)

 # deeper structuring is possible through specifying multiple keys
 self.min_value_nested = Parameter(
 'param_file_testrule',
 'Rule A', 'subkey1', 'subkey2',
 default_value=['a', 'b', 'c'] # defaults can also be dicts or lists
)

 self.listen_event('test_item', self.on_change_event, ValueChangeEventFilter())

 def on_change_event(self, event):

 # the parameter can be used like a normal variable, comparison works as expected
 if self.min_value < event.value:
 pass

 # The current value can be accessed through the value-property, but don't cache it!
 current_value = self.min_value.value

MyRuleWithParameters()

Created file:

min_value: 10
Rule A:
 subkey1:
 subkey2:
 - a
 - b
 - c

Changes in the file will be automatically picked up through Parameter.

Validation

Since parameters used to provide flexible configuration for automation classes they can get quite complex and
error prone. Thus it is possible to provide a validator for a file which will check the files for constraints,
missing keys etc. when the file is loaded.

	
set_file_validator(filename, validator, allow_extra_keys=True)

	Add a validator for the parameter file. If the file is already loaded this will reload the file.

	Parameters:

	
	filename (str) – filename which shall be validated (without extension)

	validator (Any) – Description of file content - see the library
voluptuous [https://github.com/alecthomas/voluptuous#show-me-an-example/] for examples.
Use None to remove validator.

	allow_extra_keys – Allow additional keys in the file structure

Example

import HABApp
import voluptuous

Validator can even and should be specified before loading rules

allows a dict e.g. { 'key1': {'key2': '5}}
HABApp.parameters.set_file_validator('file1', {str: {str: int}})

More complex example with an optional key:
validator = {
 'Test': int,
 'Key': {
 'mandatory_key': str,
 voluptuous.Optional('optional'): int
 }
}
HABApp.parameters.set_file_validator('file1', validator)

Create rules from Parameters

Parameteres are not bound to rule instance and thus work everywhere in the rule file.
It is possible to dynamically create rules from the contents of the parameter file.

It’s even possible to automatically reload rules if the parameter file has changed:
Just add the “reloads on” entry to the file.

my_param.yml

 key1:
 v: 10
 key2:
 v: 12

rule

import HABApp

class MyRule(HABApp.Rule):
 def __init__(self, k, v):
 super().__init__()

 print(f'{k}: {v}')

cfg = HABApp.DictParameter('my_param') # this will get the file content
for k, v in cfg.items():
 MyRule(k, v)

key1: {'v': 10}
key2: {'v': 12}

Parameter classes

	
class Parameter(filename, *keys, default_value='ToDo')

	
	
property value: Any

	Return the current value. This will do the lookup so make sure to not cache this value, otherwise
the parameter might not work as expected.

	
class DictParameter(filename, *keys, default_value='ToDo')

	Implements a dict interface

	
property value: dict

	Return the current value. This will do the lookup so make sure to not cache this value, otherwise
the parameter might not work as expected.

HABApp

This page describes the HABApp internals

Datatypes

HABApp provides some datatypes that simplify e.g. the color handling.

RGB

Datatype for RGB (red, green, blue) color handling.
RGB types can be sent directly to openHAB and will be converted accordingly.
Additionally there are wider RGB types (e.g. RGB16, RGB32) available.

from HABApp.core.types import RGB

col = RGB(5, 15, 255)
print(col)

print(col.red) # red value
print(col.r) # short name for red value
print(col[0]) # access of red value through numeric index

new_col = col.replace(red=22)
print(new_col)
print(new_col.to_hsb())

RGB(5, 15, 255)
5
5
5
RGB(22, 15, 255)
HSB(241.75, 94.12, 100.00)

	
class RGB(r, g, b)

	
	
classmethod from_hsb(obj)

	Return new Object from a HSB object for a hsb tuple

	Parameters:

	obj (Union[HSB, Tuple[float, float, float]]) – HSB object or tuple with HSB values

	Return type:

	Self

	Returns:

	new RGB object

	
replace(r=None, g=None, b=None, red=None, green=None, blue=None)

	Create a new object with (optionally) replaced values.

	Parameters:

	
	r (Optional[int]) – new red value

	red (Optional[int]) – new red value

	g (Optional[int]) – new green value

	green (Optional[int]) – new green value

	b (Optional[int]) – new blue value

	blue (Optional[int]) – new blue value

	Return type:

	Self

	
to_hsb()

	Create a new HSB object from this object

	Return type:

	HSB

	Returns:

	New HSB object

	
property b: int

	blue value

	
property blue: int

	blue value

	
property g: int

	green value

	
property green: int

	green value

	
property r: int

	red value

	
property red: int

	red value

HSB

Datatype for HSB (hue, saturation, brightness) color handling.
HSB types can be sent directly to openHAB and will be converted accordingly.

from HABApp.core.types import HSB

col = HSB(200, 25, 75)
print(col)

print(col.hue) # hue value
print(col.h) # short name for hue value
print(col[0]) # access of hue value through numeric index

new_col = col.replace(hue=22)
print(new_col)
print(new_col.to_rgb())

HSB(200.00, 25.00, 75.00)
200
200
200
HSB(22.00, 25.00, 75.00)
RGB(191, 161, 143)

	
class HSB(hue, saturation, brightness)

	
	
classmethod from_rgb(obj)

	Create an HSB object from an RGB object or an RGB tuple

	Parameters:

	obj (Union[RGB, Tuple[int, int, int]]) – HSB object or RGB tuple

	Return type:

	Self

	Returns:

	New HSB object

	
replace(h=None, s=None, b=None, hue=None, saturation=None, brightness=None)

	Create a new object with (optionally) replaced values.

	Parameters:

	
	h (Optional[float]) – New hue value

	hue (Optional[float]) – New hue value

	s (Optional[float]) – New saturation value

	saturation (Optional[float]) – New saturation value

	b (Optional[float]) – New brightness value

	brightness (Optional[float]) – New brightness value

	Return type:

	Self

	
to_rgb()

	Create an RGB object from this object

	Return type:

	RGB

	Returns:

	New RGB object

	
property b: float

	brightness value

	
property brightness: float

	brightness value

	
property h: float

	hue value

	
property hue: float

	hue value

	
property s: float

	saturation value

	
property saturation: float

	saturation value

Items

Item

[image: Inheritance diagram of HABApp.core.items.Item]

	
class Item()

	Simple item, used to store values in HABApp

	
classmethod get_create_item(name, initial_value=None)

	Creates a new item in HABApp and returns it or returns the already existing one with the given name

	Parameters:

	
	name (str) – item name

	initial_value – state the item will have if it gets created

	Return type:

	Item

	Returns:

	The item

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

ColorItem

[image: Inheritance diagram of HABApp.core.items.ColorItem]

	
class ColorItem()

	Item for dealing with color related values

	
classmethod get_create_item(name, hue=0.0, saturation=0.0, brightness=0.0)

	Creates a new item in HABApp and returns it or returns the already existing one with the given name

	Parameters:

	
	name (str) – item name

	initial_value – state the item will have if it gets created

	Returns:

	item

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_rgb(max_rgb_value=255)

	Return a rgb equivalent of the color

	Parameters:

	max_rgb_value – the max value for rgb, typically 255 (default) or 65.536

	Return type:

	Tuple[int, int, int]

	Returns:

	rgb tuple

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
is_off()

	Return true if item is off

	Return type:

	bool

	
is_on()

	Return true if item is on

	Return type:

	bool

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
post_rgb(r, g, b, max_rgb_value=255)

	Set a new rgb value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	
	r – red value

	g – green value

	b – blue value

	max_rgb_value – the max value for rgb, typically 255 (default) or 65.536

	Return type:

	ColorItem

	Returns:

	self

	
post_value(hue=0.0, saturation=0.0, brightness=0.0)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	
	hue – hue (in °)

	saturation – saturation (in %)

	brightness – brightness (in %)

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_rgb(r, g, b, max_rgb_value=255, ndigits=2)

	Set a rgb value

	Parameters:

	
	r – red value

	g – green value

	b – blue value

	max_rgb_value – the max value for rgb, typically 255 (default) or 65.536

	ndigits (Optional[int]) – Round the hsb values to the specified digits, None to disable rounding

	Return type:

	ColorItem

	Returns:

	self

	
set_value(hue=0.0, saturation=0.0, brightness=0.0)

	Set the color value

	Parameters:

	
	hue – hue (in °)

	saturation – saturation (in %)

	brightness – brightness (in %)

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

AggregationItem

The aggregation item is an item which takes the values of another item in a time period as an input.
It then allows to process these values and generate an aggregated output based on it.
The item makes implementing time logic like “Has it been dark for the last hour?” or
“Was there frost during the last six hours?” really easy.
And since it is just like a normal item triggering on changes etc. is possible, too.

from HABApp.core.items import AggregationItem
my_agg = AggregationItem.get_create_item('MyAggregationItem')

Connect the source item with the aggregation item
my_agg.aggregation_source('MyInputItem')

Aggregate all changes in the last two hours
my_agg.aggregation_period(2 * 3600)

Use max as an aggregation function
my_agg.aggregation_func = max

The value of my_agg in the example will now always be the maximum of MyInputItem in the last two hours.
It will automatically update and always reflect the latest changes of MyInputItem.

[image: Inheritance diagram of HABApp.core.items.AggregationItem]

	
class AggregationItem()

	
	
aggregation_func(func)

	Set the function which will be used to aggregate all values. E.g. min or max

	Parameters:

	func (Callable[[Iterable], Any]) – The function which takes an iterator an returns an aggregated value.
Important: the function must be non blocking!

	Return type:

	AggregationItem

	
aggregation_period(period)

	Set the period in which the items will be aggregated

	Parameters:

	period (Union[float, int, timedelta]) – period in seconds

	Return type:

	AggregationItem

	
aggregation_source(source, only_changes=False)

	Set the source item which changes will be aggregated

	Parameters:

	
	source (Union[BaseValueItem, str]) – name or Item obj

	only_changes (bool) – if true only value changes instead of value updates will be added

	Return type:

	AggregationItem

	
classmethod get_create_item(name)

	Creates a new AggregationItem in HABApp and returns it or returns the
already existing item with the given name

	Parameters:

	name (str) – item name

	Returns:

	item

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

BaseValueItem

Base class for items with values. All items that have a value must inherit from BaseValueItem
May not be instantiated directly.

[image: Inheritance diagram of HABApp.core.items.BaseValueItem]

	
class BaseValueItem()

	Simple item

	Variables:

	
	name (str) – Name of the item (read only)

	value – Value of the item, can be anything (read only)

	last_change (datetime) – Timestamp of the last time when the item has changed the value (read only)

	last_update (datetime) – Timestamp of the last time when the item has updated the value (read only)

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

Events

ValueUpdateEvent

This event gets emitted every time a value of an item receives an update

[image: Inheritance diagram of HABApp.core.events.ValueUpdateEvent]

	
class ValueUpdateEvent(name, value)

	
	Variables:

	
	name (str) –

	value (Any) –

ValueChangeEvent

This event gets emitted every time a value of an item changes

[image: Inheritance diagram of HABApp.core.events.ValueChangeEvent]

	
class ValueChangeEvent(name, value, old_value)

	
	Variables:

	
	name (str) –

	value (Any) –

	old_value (Any) –

ItemNoUpdateEvent

This event gets emitted when an item is watched for updates and no update has been made in a certain amount of time.

[image: Inheritance diagram of HABApp.core.events.ItemNoUpdateEvent]

	
class ItemNoUpdateEvent(name, seconds)

	
	Variables:

	
	name (str) –

	seconds (Union[int, float]) –

ItemNoChangeEvent

This event gets emitted when an item is watched for changes and no change has been made in a certain amount of time.

[image: Inheritance diagram of HABApp.core.events.ItemNoChangeEvent]

	
class ItemNoChangeEvent(name, seconds)

	
	Variables:

	
	name (str) –

	seconds (Union[int, float]) –

openHAB

Additional configuration

For optimal performance it is recommended to use Basic Auth (available from openHAB 3.1 M3 on).
It can be enabled through GUI or through textual configuration.

Textual configuration

The settings are in the runtime.cfg.
Remove the # before the entry to activate it.

################ REST API ###################
org.openhab.restauth:allowBasicAuth=true

GUI

It can be enabled through the gui in settings -> API Security -> Allow Basic Authentication.

[image: _images/openhab_api_config.png]

openHAB item types

Description and example

Items that are created from openHAB inherit all from OpenhabItem and
provide convenience functions which simplify many things.

Example:

from HABApp.openhab.items import ContactItem, SwitchItem

my_contact = ContactItem.get_item('MyContact')
if my_contact.is_open():
 print('Contact is open!')

my_switch = SwitchItem.get_item('MySwitch')
if my_switch.is_on():
 my_switch.off()

Contact is open!

NumberItem

[image: Inheritance diagram of HABApp.openhab.items.NumberItem]

	
class NumberItem()

	NumberItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (Union[int, float]) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

	
property unit: str | None

	Return the item unit if it is a “Unit of Measurement” item else None

ContactItem

[image: Inheritance diagram of HABApp.openhab.items.ContactItem]

	
class ContactItem()

	
	Variables:

	
	name (str) – Item name

	value (str) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
closed()

	Post an update to the item with the closed value

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
is_closed()

	Test value against closed value

	Return type:

	bool

	
is_open()

	Test value against open value

	Return type:

	bool

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
open()

	Post an update to the item with the open value

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

SwitchItem

[image: Inheritance diagram of HABApp.openhab.items.SwitchItem]

	
class SwitchItem()

	SwitchItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (str) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
is_off()

	Test value against off-value

	Return type:

	bool

	
is_on()

	Test value against on-value

	Return type:

	bool

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
off()

	Command item off

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
on()

	Command item on

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

DimmerItem

[image: Inheritance diagram of HABApp.openhab.items.DimmerItem]

	
class DimmerItem()

	DimmerItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (Union[int, float]) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
is_off()

	Test value against off-value

	Return type:

	bool

	
is_on()

	Test value against on-value

	Return type:

	bool

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
off()

	Command item off

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
on()

	Command item on

	
percent(value)

	Command to value (in percent)

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

DatetimeItem

[image: Inheritance diagram of HABApp.openhab.items.DatetimeItem]

	
class DatetimeItem()

	DateTimeItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (datetime) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

RollershutterItem

[image: Inheritance diagram of HABApp.openhab.items.RollershutterItem]

	
class RollershutterItem()

	RollershutterItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (Union[int, float]) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
down()

	Command down

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
is_down()

	Test value against off-value

	Return type:

	bool

	
is_up()

	Test value against on-value

	Return type:

	bool

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
percent(value)

	Command to value (in percent)

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
up()

	Command up

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

ColorItem

[image: Inheritance diagram of HABApp.openhab.items.ColorItem]

	
class ColorItem()

	ColorItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (Tuple[float, float, float]) – Current item value (or state in openHAB wording)

	hue (float) – Hue part of the value

	saturation (float) – Saturation part of the value

	brightness (float) – Brightness part of the value

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_rgb(max_rgb_value=255)

	Return a rgb equivalent of the color

	Parameters:

	max_rgb_value – the max value for rgb, typically 255 (default) or 65.536

	Return type:

	Tuple[int, int, int]

	Returns:

	rgb tuple

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
is_off()

	Return true if item is off

	Return type:

	bool

	
is_on()

	Return true if item is on

	Return type:

	bool

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
off()

	Command item off

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
on()

	Command item on

	
percent(value)

	Command to value (in percent)

	
post_rgb(r, g, b, max_rgb_value=255)

	Set a new rgb value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	
	r – red value

	g – green value

	b – blue value

	max_rgb_value – the max value for rgb, typically 255 (default) or 65.536

	Return type:

	ColorItem

	Returns:

	self

	
post_value(hue=0.0, saturation=0.0, brightness=0.0)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	
	hue – hue (in °)

	saturation – saturation (in %)

	brightness – brightness (in %)

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_rgb(r, g, b, max_rgb_value=255, ndigits=2)

	Set a rgb value

	Parameters:

	
	r – red value

	g – green value

	b – blue value

	max_rgb_value – the max value for rgb, typically 255 (default) or 65.536

	ndigits (Optional[int]) – Round the hsb values to the specified digits, None to disable rounding

	Return type:

	ColorItem

	Returns:

	self

	
set_value(hue=0.0, saturation=0.0, brightness=0.0)

	Set the color value

	Parameters:

	
	hue – hue (in °)

	saturation – saturation (in %)

	brightness – brightness (in %)

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

StringItem

[image: Inheritance diagram of HABApp.openhab.items.StringItem]

	
class StringItem()

	StringItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (str) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

LocationItem

[image: Inheritance diagram of HABApp.openhab.items.LocationItem]

	
class LocationItem()

	LocationItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (Optional[Tuple[float, float, Optional[float]]]) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

PlayerItem

[image: Inheritance diagram of HABApp.openhab.items.PlayerItem]

	
class PlayerItem()

	PlayerItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (str) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

GroupItem

[image: Inheritance diagram of HABApp.openhab.items.GroupItem]

	
class GroupItem()

	GroupItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (Any) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property members: Tuple[OpenhabItem, ...]

	Resolves and then returns all group members

	
property name: str

	
	Returns:

	Name of the item (read only)

ImageItem

[image: Inheritance diagram of HABApp.openhab.items.ImageItem]

	
class ImageItem()

	ImageItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (bytes) – Current item value (or state in openHAB wording)

	image_type (Optional[str]) – image type (e.g. jpg or png)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(data, img_type=None)

	Post an update to an openHAB image with new image data. Image type is automatically detected,
in rare cases when this does not work it can be set manually.

	Parameters:

	
	data (bytes) – image data

	img_type (Optional[str]) – (optional) what kind of image, jpeg or png

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(data, img_type=None)

	Send a command to an openHAB image with new image data. Image type is automatically detected,
in rare cases when this does not work it can be set manually.

	Parameters:

	
	data (bytes) – image data

	img_type (Optional[str]) – (optional) what kind of image, jpeg or png

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

CallItem

[image: Inheritance diagram of HABApp.openhab.items.CallItem]

	
class CallItem()

	CallItem which accepts and converts the data types from OpenHAB

	Variables:

	
	name (str) – Item name

	value (Tuple[str, ...]) – Current item value (or state in openHAB wording)

	label (Optional[str]) – Item label or None if not configured

	tags (FrozenSet[str]) – Item tags

	groups (FrozenSet[str]) – The groups the item is in

	metadata (Mapping[str, MetaData]) – Item metadata

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_persistence_data(persistence=None, start_time=None, end_time=None)

	Query historical data from the OpenHAB persistence service

	Parameters:

	
	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
oh_post_update(value=<MISSING>)

	Post an update to the openHAB item

	Parameters:

	value (Any) – (optional) value to be posted. If not specified the current item value will be used.

	
oh_post_update_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
oh_send_command(value=<MISSING>)

	Send a command to the openHAB item

	Parameters:

	value (Any) – (optional) value to be sent. If not specified the current item value will be used.

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

Thing

[image: Inheritance diagram of HABApp.openhab.items.Thing]

	
class Thing(name)

	Base class for Things

	Variables:

	
	status (ThingStatusEnum) – Status of the thing (e.g. OFFLINE, ONLINE, …)

	status_detail (ThingStatusDetailEnum) – Additional detail for the status

	status_description (str) – Additional description for the status

	label (str) – Thing label

	location (str) – Thing location

	configuration (Mapping[str, Any]) – Thing configuration

	properties (Mapping[str, Any]) – Thing properties

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
set_enabled(enable=True)

	Enable/disable the thing

	Parameters:

	enable (bool) – True to enable, False to disable the thing

	Returns:

	

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

Interaction with a openHAB

All interaction with the openHAB is done through the self.oh or self.openhab object in the rule
or through an OpenhabItem.

[image: _images/openhab.gif]

Function parameters

	
get_thing(thing)

	Return the complete openHAB thing definition

	Parameters:

	thing (str | ItemRegistryItem) – name of the thing or the item

	Returns:

	openHAB thing

	
set_thing_enabled(thing, enabled=True)

	Enable/disable a thing

	Parameters:

	
	thing (str | ItemRegistryItem) – name of the thing or the thing object

	enabled (bool) – True to enable thing, False to disable thing

	
item_exists(item)

	Check if an item exists in the openHAB item registry

	Parameters:

	item (str | ItemRegistryItem) – name of the item or item

	Returns:

	True if item was found

	
get_item(item)

	Return the complete openHAB item definition

	Parameters:

	item (str | ItemRegistryItem) – name of the item or item

	Return type:

	Optional[ItemResp]

	Returns:

	openHAB item

	
remove_item(item)

	Removes an item from the openHAB item registry

	Parameters:

	item (str | ItemRegistryItem) – name

	Returns:

	True if item was found and removed

	
create_item(item_type, name, label=None, category=None, tags=None, groups=None, group_type=None, group_function=None, group_function_params=None)

	Creates a new item in the openHAB item registry or updates an existing one

	Parameters:

	
	item_type (str) – item type

	name (str) – item name

	label (Optional[str]) – item label

	category (Optional[str]) – item category

	tags (Optional[list[str]]) – item tags

	groups (Optional[list[str]]) – in which groups is the item

	group_type (Optional[str]) – what kind of group is it

	group_function (Optional[str]) – group state aggregation function

	group_function_params (Optional[list[str]]) – params for group state aggregation

	Return type:

	bool

	Returns:

	True if item was created/updated

	
set_metadata(item, namespace, value, config)

	Add/set metadata to an item

	Parameters:

	
	item (str | ItemRegistryItem) – name of the item or item

	namespace (str) – namespace, e.g. stateDescription

	value (str) – value

	config (dict) – configuration e.g. {"options": "A,B,C"}

	Returns:

	True if metadata was successfully created/updated

	
remove_metadata(item, namespace)

	Remove metadata from an item

	Parameters:

	
	item (str | ItemRegistryItem) – name of the item or item

	namespace (str) – namespace

	Returns:

	True if metadata was successfully removed

	
get_persistence_services()

	Return all available persistence services

	
get_persistence_data(item, persistence, start_time, end_time)

	Query historical data from the openHAB persistence service

	Parameters:

	
	item (str | ItemRegistryItem) – name of the persistent item

	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	start_time (Optional[datetime]) – return only items which are newer than this

	end_time (Optional[datetime]) – return only items which are older than this

	Return type:

	OpenhabPersistenceData

	Returns:

	last stored data from persistency service

	
set_persistence_data(item, persistence, time, state)

	Set a measurement for a item in the persistence serivce

	Parameters:

	
	item_name – name of the persistent item

	persistence (Optional[str]) – name of the persistence service (e.g. rrd4j, mapdb). If not set default will be used

	time (datetime) – time of measurement

	state (Any) – state which will be set

	Returns:

	True if data was stored in persistency service

	
get_link(item, channel)

	returns the link between an item and a (things) channel

	Parameters:

	
	item (str | ItemRegistryItem) – name of the item or item

	channel (str) – uid of the (things) channel (usually something like AAAA:BBBBB:CCCCC:DDDD:0#SOME_NAME)

	Return type:

	ItemChannelLinkResp

	
remove_link(item, channel)

	removes a link between a (things) channel and an item

	Parameters:

	
	item (str | ItemRegistryItem) – name of the item or item

	channel (str) – uid of the (things) channel (usually something like AAAA:BBBBB:CCCCC:DDDD:0#SOME_NAME)

	Return type:

	bool

	Returns:

	True on successful removal, otherwise False

	
create_link(item, channel, configuration=None)

	creates a link between an item and a (things) channel

	Parameters:

	
	item (str | ItemRegistryItem) – name of the item or item

	channel (str) – uid of the (things) channel (usually something like AAAA:BBBBB:CCCCC:DDDD:0#SOME_NAME)

	configuration (Optional[dict[str, Any]]) – optional configuration for the channel

	Return type:

	bool

	Returns:

	True on successful creation, otherwise False

	
send_command(item, command)

	Send the specified command to the item

	Parameters:

	
	item (str | ItemRegistryItem) – item name or item

	command (Any) – command

	
post_update(item, state)

	Post an update to the item

	Parameters:

	
	item (str | ItemRegistryItem) – item name or item

	state (Any) – new item state

openHAB event types

openHAB produces various events that are mapped to the internal event bus.
On the openHAB page [https://next.openhab.org/docs/developer/utils/events.html#the-core-events]
there is an explanation for the various events.

Item events

ItemStateEvent

Since this event inherits from ValueUpdateEvent you can listen to ValueUpdateEvent
and it will also trigger for ItemStateEvent.

[image: Inheritance diagram of HABApp.openhab.events.ItemStateEvent]

	
class ItemStateEvent(name, value)

	

ItemStateChangedEvent

Since this event inherits from ValueChangeEvent you can listen to ValueChangeEvent
and it will also trigger for ItemStateChangedEvent.

[image: Inheritance diagram of HABApp.openhab.events.ItemStateChangedEvent]

	
class ItemStateChangedEvent(name, value, old_value)

	

ItemCommandEvent

[image: Inheritance diagram of HABApp.openhab.events.ItemCommandEvent]

	
class ItemCommandEvent(name, value)

	
	Variables:

	
	name (str) –

	value (Any) –

ItemAddedEvent

[image: Inheritance diagram of HABApp.openhab.events.ItemAddedEvent]

	
class ItemAddedEvent(name, type, label, tags, group_names)

	
	Variables:

	
	name (str) –

	type (str) –

	label (Optional[str]) –

	tags (FrozenSet[str]) –

	groups (FrozenSet[str]) –

ItemUpdatedEvent

[image: Inheritance diagram of HABApp.openhab.events.ItemUpdatedEvent]

	
class ItemUpdatedEvent(name, type, label, tags, group_names)

	
	Variables:

	
	name (str) –

	type (str) –

	label (Optional[str]) –

	tags (FrozenSet[str]) –

	groups (FrozenSet[str]) –

ItemRemovedEvent

[image: Inheritance diagram of HABApp.openhab.events.ItemRemovedEvent]

	
class ItemRemovedEvent(name)

	
	Variables:

	name (str) –

ItemStatePredictedEvent

[image: Inheritance diagram of HABApp.openhab.events.ItemStatePredictedEvent]

	
class ItemStatePredictedEvent(name, value)

	
	Variables:

	
	name (str) –

	value (Any) –

GroupStateChangedEvent

[image: Inheritance diagram of HABApp.openhab.events.GroupStateChangedEvent]

	
class GroupStateChangedEvent(name, item, value, old_value)

	
	Variables:

	
	name (str) –

	item (str) –

	value (Any) –

	old_value (Any) –

Channel events

ChannelTriggeredEvent

[image: Inheritance diagram of HABApp.openhab.events.ChannelTriggeredEvent]

	
class ChannelTriggeredEvent(name='', event='', channel='')

	
	Variables:

	
	name (str) –

	event (str) –

	channel (str) –

Thing events

ThingAddedEvent

[image: Inheritance diagram of HABApp.openhab.events.ThingAddedEvent]

	
class ThingAddedEvent(name, thing_type, label, location, channels, configuration, properties)

	

ThingUpdatedEvent

[image: Inheritance diagram of HABApp.openhab.events.ThingUpdatedEvent]

	
class ThingUpdatedEvent(name, thing_type, label, location, channels, configuration, properties)

	

ThingRemovedEvent

[image: Inheritance diagram of HABApp.openhab.events.ThingRemovedEvent]

	
class ThingRemovedEvent(name, thing_type, label, location, channels, configuration, properties)

	

ThingStatusInfoEvent

[image: Inheritance diagram of HABApp.openhab.events.ThingStatusInfoEvent]

	
class ThingStatusInfoEvent(name='', status=ThingStatusEnum.UNINITIALIZED, detail=ThingStatusDetailEnum.NONE, description='')

	
	Variables:

	
	name (str) –

	status (ThingStatusEnum) –

	detail (ThingStatusDetailEnum) –

	description (str) –

ThingStatusInfoChangedEvent

[image: Inheritance diagram of HABApp.openhab.events.ThingStatusInfoChangedEvent]

	
class ThingStatusInfoChangedEvent(name='', status=ThingStatusEnum.UNINITIALIZED, detail=ThingStatusDetailEnum.NONE, description='', old_status=ThingStatusEnum.UNINITIALIZED, old_detail=ThingStatusDetailEnum.NONE, old_description='')

	
	Variables:

	
	name (str) –

	status (ThingStatusEnum) –

	detail (ThingStatusDetailEnum) –

	description (str) –

	old_status (ThingStatusEnum) –

	old_detail (ThingStatusDetailEnum) –

	old_description (str) –

ThingFirmwareStatusInfoEvent

[image: Inheritance diagram of HABApp.openhab.events.ThingFirmwareStatusInfoEvent]

	
class ThingFirmwareStatusInfoEvent(name='', status='')

	
	Variables:

	
	name (str) –

	status (str) –

Event filters

ItemStateUpdatedEventFilter

[image: Inheritance diagram of HABApp.openhab.events.ItemStateUpdatedEventFilter]

	
class ItemStateUpdatedEventFilter(value=<MISSING>)

	

ItemStateChangedEventFilter

[image: Inheritance diagram of HABApp.openhab.events.ItemStateChangedEventFilter]

	
class ItemStateChangedEventFilter(value=<MISSING>, old_value=<MISSING>)

	

ItemCommandEventFilter

[image: Inheritance diagram of HABApp.openhab.events.ItemCommandEventFilter]

	
class ItemCommandEventFilter(value=<MISSING>)

	

Transformations

From openHAB 4 on it’s possible to use the existing transformations in HABApp.
Transformations are loaded every time when HABApp connects to openHAB.
OpenHAB does not issue an event when the transformations change so in order for HABApp to
pick up the changes either HABApp or openHAB has to be restarted.
Available transformations are logged on connect.

map

The map transformation [https://www.openhab.org/addons/transformations/map/] is returned as a dict.
If the map transformation is defined with a default the default is used accordingly.

Example:

from HABApp.openhab import transformations

TEST_MAP = transformations.map['test.map'] # load the transformation, can be used anywhere
print(TEST_MAP['test_key']) # It's a normal dict with keys as str and values as str

if all keys or values are numbers they are automatically casted to an int
NUMBERS = transformations.map['numbers.map']
print(NUMBERS[1]) # Note that the key is an int

test_value
test number meaning

Textual thing configuration

Description

HABApp offers a special mechanism to textually define thing configuration parameters and linked items for things
which have been added through the gui.
This combines the best of both worlds:
auto discovery, easy and fast sharing of parameters and items across things.

Configuration is done in the thing_your_name.yml file in the config folder (see Configuration).
Every file that starts with thing_ has the .yml ending will be loaded.

The Parameters and items will be checked/set when HABApp connects to openHAB or
whenever the corresponding file gets changed.

Principle of operation

All existing things from openHAB can be filtered by different criteria.
For each one of these remaining things it is then possible to

	Set thing parameters

	Create items with values taken from the thing fields

	
Apply filters to the channels of the thing

For each matching channel it is possible to create and link items with values taken from the thing and the matching channel values

There is also a test mode which prints out all required information and does not make any changes.

A valid .items file will automatically be created next to the .yml file containing all created items.
It can be used to get a quick overview what items (would) have been created or copied into the items folder.

File Structure

Configuration is done through a .yml file.

Example

The following example will show how to set the Z-Wave Parameters 4, 5, 6 and 8 for a Philio PST02A Z-Wave sensor
and how to automatically link items to it.

Tip

Integer values can be specified either as integer (20) or hex (0x14)

The entries thing config, create items and channels are optional and can be combined as desired.

Test mode: will not do anything but instead print out information
test: True

Define filters which will reduce the number of things,
all defined filters have to match for further processing
filter:
 thing_type: zwave:philio_pst02a_00_000

Set this configuration every matching thing. HABApp will automatically only
change the values which are not already correct.
Here it is the z-wave parameters which are responsible for the device behaviour
thing config:
 4: 99 # Light Threshold
 5: 8 # Operation Mode
 6: 4 # MultiSensor Function Switch
 7: 20 # Customer Function

Create items for every matching thing
create items:
 - type: Number
 name: '{thing_label, :(.+)$}_MyNumber' # Use the label from the thing as an input for the name,
 label: '{thing_label, :(.+)$} MyNumber [%d]' # the regex will take everything from the ':' on until the end
 icon: battery

channels:
 # reduce the channels of the thing with these filters
 # and link items to it
 - filter:
 channel_type: zwave:alarm_motion
 link items:
 - type: Number
 name: '{thing_label, :(.+)$}_Movement' # Use the label from the thing as an input for the name,
 label: '{thing_label, :(.+)$} Movement [%d %%]' # the regex will take everything from the ':' on until the end
 icon: battery
 groups: ['group1', 'group2']
 tags: ['tag1']

 - filter:
 channel_type: zwave:sensor_temperature
 link items:
 - type: Number
 name: '{thing_label, :(.+)$}_Temperature'
 label: '{thing_label, :(.+)$} Temperature [%d %%]'
 icon: battery

Multiple filters and filter definitions in one file

It is possible to add multiple thing processors into one file.
To achieve this the root entry is now a list.

Filters can also be lists e.g. if the have to be applied multiple times to the same filed.

- test: True
 filter:
 thing_type: zwave:philio_pst02a_00_000
 ...

- test: True
 # multiple filters on the same field, all have to match
 filter:
 - thing_type: zwave:fibaro.+
 - thing_type: zwave:fibaro_fgrgbw_00_000
 ...

Thing configuration

With the thing config block it is possible to set a configuration for each matching thing.
If the parameters are already correct, they will not be set again.

Warning

The value of the configuration parameters will not be checked and will be written as specified.
It is recommended to use HABmin or PaperUI to generate the initial configuration and use this mechanism to spread
it to things of the same type.

Example

thing config:
 4: 99 # Light Threshold
 5: 8 # Operation Mode
 6: 4 # MultiSensor Function Switch
 7: 20 # Customer Function

References to other parameters

It is possible to use references to mathematically build parameters from other parameters.
Typically this would be fade duration and refresh interval.
References to other parameter values can be created with $.
Example:

thing config:
 5: 8
 6: '$5 / 2' # Use value from parameter 5 and divide it by two.
 7: 'int($5 / 2)' # it is possible to use normal python data conversions

Item configuration

Items can be configured under create items -> [] and channels -> [] -> link items -> [].

Structure

Mandatory values are type and name, all other values are optional.

type: Number
name: my_name
label: my_label
icon: my_icon
groups: ['group1', 'group2']
tags: ['tag1', 'tag1']

Metadata

It is possible to add metadata to the created items through the optional metadata entry in the item config.

There are two forms how metadata can be set. The implicit form for simple key-value pairs (e.g. autoupdate) or
the explicit form where the entries are under value and config (e.g. alexa)

- type: Number
 name: '{thing_label, :(.+)$}_Temperature'
 label: '{thing_label, :(.+)$} Temperature [%d %%]'
 icon: battery
 metadata:
 autoupdate: 'false'
 homekit: 'TemperatureSensor'
 alexa:
 'value': 'Fan'
 'config':
 'type': 'oscillating'
 'speedSteps': 3

The config is equivalent to the following item configuration:

Number MyLabel_Temperature "MyLabel Temperature [%d %%]" { autoupdate="false", homekit="TemperatureSensor", alexa="Fan" [type="oscillating", speedSteps=3] }

Fields

Filtering things/channels

The filter value can be applied to any available field from the Thing/Channel.
The filter value is a regex that has to fully match the value.

Syntax:

filter:
 FIELD_NAME: REGULAR_EXPRESSION

e.g.

filter:
 thing_uid: zwave:device:controller:node35

If multiple filters are specified all have to match to select the Thing or Channel.

Multiple filters on different columns
filter:
 thing_type: zwave:fibaro.+
 thing_uid: zwave:device:controller:node35

Multiple filters on the same columns (rarely needed)
filter:
- thing_type: zwave:fibaro.+
- thing_type: zwave:fibaro_fgrgbw_00_000

Field values as inputs

Filed values are available for item configuration and can be applied to all fields
in the item configuration except for type and metadata.

Syntax

Macros that select field values are framed with {} so the containing string has to be put in annotation marks.
There are three modes of operation with wildcards:

	
Just insert the value from the field:

{field}

	
Insert a part of the value from the field. A regular expression is used to extract the part and
therefore has to contain a capturing group.

{field, regex(with_group)}

	
Do a regex replace on the value from the field and use the result

{field, regex, replace}

Available fields

Tip

Test mode will show a table with all available fields and their value

The following fields are available for things:

	thing_uid

	thing_type

	thing_location

	thing_label

	bridge_uid

Additional available fields for channels:

	channel_uid

	channel_type

	channel_label

	channel_kind

Example

Log output

This will show the output for the example from File Structure

Loading /config/thing_philio.yml!
+--+
| Thing overview |
+---------------------------------+----------------------------+----------------+--+--+----------+
| thing_uid | thing_type | thing_location | thing_label | bridge_uid | editable |
+---------------------------------+----------------------------+----------------+--+--+----------+
zwave:device:controller:node32	zwave:fibaro_fgrgbw_00_000	Room1	Fibaro RGBW (Node 32): Room1 RGBW	zwave:serial_zstick:controller	True
zwave:device:controller:node7	zwave:fibaro_fgrgbw_00_000	Room2	Fibaro RGBW (Node 07): Room2 RGBW	zwave:serial_zstick:controller	True
zwave:device:controller:node23	zwave:fibaro_fgrgbw_00_000	Room3	Fibaro RGBW (Node 23): Room3 RGBW	zwave:serial_zstick:controller	True
zwave:device:controller:node35	zwave:philio_pst02a_00_000	Room1	Philio PST02A (Node 35): Room1 Door	zwave:serial_zstick:controller	True
zwave:device:controller:node15	zwave:philio_pst02a_00_000	Room2	Philio PST02A (Node 15): Room2 Window	zwave:serial_zstick:controller	True
zwave:device:controller:node17	zwave:philio_pst02a_00_000	Room3	Philio PST02A (Node 17): Room3 Window	zwave:serial_zstick:controller	True
zwave:device:controller:node3	zwave:philio_pst02a_00_000	Room1	Philio PST02A (Node 03): Room1 Window	zwave:serial_zstick:controller	True
zwave:device:controller:node5	zwave:philio_pst02a_00_000	Room4	Philio PST02A (Node 05): FrontDoor	zwave:serial_zstick:controller	True
zwave:serial_zstick:controller	zwave:serial_zstick		ZWave Controller		False
+---------------------------------+----------------------------+----------------+--+--+----------+					
thing_type "zwave:philio_pst02a_00_000" matches for zwave:device:controller:node35!					
thing_type "zwave:philio_pst02a_00_000" matches for zwave:device:controller:node15!					
thing_type "zwave:philio_pst02a_00_000" matches for zwave:device:controller:node17!					
thing_type "zwave:philio_pst02a_00_000" matches for zwave:device:controller:node3!					
thing_type "zwave:philio_pst02a_00_000" matches for zwave:device:controller:node5!					
+---+					
Current configuration					
+-------------------------+-------------------+-------------------+-------------------+------------------+------------------+					
Parameter	controller:node35	controller:node15	controller:node17	controller:node3	controller:node5
+-------------------------+-------------------+-------------------+-------------------+------------------+------------------+					
2	-1	-1	-1	-1	-1
3	80	80	80	80	80
4	99	99	99	99	99
5	0	8	8	8	8
6	4	0	0	0	0
7	22	20	20	20	20
8	3	3	3	3	3
9	4	0	4	4	4
10	12	12	12	12	12
11	12	12	12	12	12
12	12	12	2	12	4
13	12	12	2	12	4
20	30	30	30	30	30
21	1	0	0	0	0
22	0	0	0	0	0
Group1	['controller']	['controller']	['controller']	['controller']	['controller']
Group2	[]	[]	[]	[]	[]
binding_cmdrepollperiod	1500	1500	1500	1500	1500
binding_pollperiod	86400	86400	86400	86400	86400
wakeup_interval	86400	86400	86400	86400	86400
+-------------------------+-------------------+-------------------+-------------------+------------------+------------------+					
Would set {5: 8, 7: 20} for zwave:device:controller:node35					
Would set {6: 4} for zwave:device:controller:node15					
Would set {6: 4} for zwave:device:controller:node17					
Would set {6: 4} for zwave:device:controller:node3					
Would set {6: 4} for zwave:device:controller:node5					
+--+					
Channels for zwave:philio_pst02a_00_000					
+---+--------------------------+------------------------+--------------+					
channel_uid	channel_type	channel_label	channel_kind		
+---+--------------------------+------------------------+--------------+					
zwave:device:controller:node35:sensor_door	zwave:sensor_door	Door/Window Sensor	STATE		
zwave:device:controller:node35:alarm_motion	zwave:alarm_motion	Motion Sensor	STATE		
zwave:device:controller:node35:alarm_tamper	zwave:alarm_tamper	Tamper Alarm	STATE		
zwave:device:controller:node35:sensor_luminance	zwave:sensor_luminance	Sensor (luminance)	STATE		
zwave:device:controller:node35:sensor_temperature	zwave:sensor_temperature	Sensor (temperature)	STATE		
zwave:device:controller:node35:alarm_access	zwave:alarm_access	Alarm (Access Control)	STATE		
zwave:device:controller:node35:alarm_burglar	zwave:alarm_burglar	Alarm (Burglar)	STATE		
zwave:device:controller:node35:battery-level	system:battery-level	Batterieladung	STATE		
+---+--------------------------+------------------------+--------------+
channel_type "zwave:alarm_motion" matches for zwave:device:controller:node35:alarm_motion!
channel_type "zwave:sensor_temperature" matches for zwave:device:controller:node35:sensor_temperature!

channel_type "zwave:alarm_motion" matches for zwave:device:controller:node15:alarm_motion!
channel_type "zwave:sensor_temperature" matches for zwave:device:controller:node15:sensor_temperature!

channel_type "zwave:alarm_motion" matches for zwave:device:controller:node17:alarm_motion!
channel_type "zwave:sensor_temperature" matches for zwave:device:controller:node17:sensor_temperature!

channel_type "zwave:alarm_motion" matches for zwave:device:controller:node3:alarm_motion!
channel_type "zwave:sensor_temperature" matches for zwave:device:controller:node3:sensor_temperature!

channel_type "zwave:alarm_motion" matches for zwave:device:controller:node5:alarm_motion!
channel_type "zwave:sensor_temperature" matches for zwave:device:controller:node5:sensor_temperature!

Would create Item(type='Number', name='Room1_Door_MyNumber', label='Room1 Door MyNumber [%d]', icon='battery', groups=[], tags=[], link=None)
Would create Item(type='Number', name='Room1_Door_Movement', label='Room1 Door Movement [%d %%]', icon='battery', groups=['group1', 'group2'], tags=['tag1'], link='zwave:device:controller:node35:alarm_motion')
Would create Item(type='Number', name='Room1_Door_Temperature', label='Room1 Door Temperature [%d %%]', icon='battery', groups=[], tags=[], link='zwave:device:controller:node35:sensor_temperature')
Would create Item(type='Number', name='Room2_Window_MyNumber', label='Room2 Window MyNumber [%d]', icon='battery', groups=[], tags=[], link=None)
Would create Item(type='Number', name='Room2_Window_Movement', label='Room2 Window Movement [%d %%]', icon='battery', groups=['group1', 'group2'], tags=['tag1'], link='zwave:device:controller:node15:alarm_motion')
Would create Item(type='Number', name='Room2_Window_Temperature', label='Room2 Window Temperature [%d %%]', icon='battery', groups=[], tags=[], link='zwave:device:controller:node15:sensor_temperature')
Would create Item(type='Number', name='Room3_Window_MyNumber', label='Room3 Window MyNumber [%d]', icon='battery', groups=[], tags=[], link=None)
Would create Item(type='Number', name='Room3_Window_Movement', label='Room3 Window Movement [%d %%]', icon='battery', groups=['group1', 'group2'], tags=['tag1'], link='zwave:device:controller:node17:alarm_motion')
Would create Item(type='Number', name='Room3_Window_Temperature', label='Room3 Window Temperature [%d %%]', icon='battery', groups=[], tags=[], link='zwave:device:controller:node17:sensor_temperature')
Would create Item(type='Number', name='Room1_Window_MyNumber', label='Room1 Window MyNumber [%d]', icon='battery', groups=[], tags=[], link=None)
Would create Item(type='Number', name='Room1_Window_Movement', label='Room1 Window Movement [%d %%]', icon='battery', groups=['group1', 'group2'], tags=['tag1'], link='zwave:device:controller:node3:alarm_motion')
Would create Item(type='Number', name='Room1_Window_Temperature', label='Room1 Window Temperature [%d %%]', icon='battery', groups=[], tags=[], link='zwave:device:controller:node3:sensor_temperature')
Would create Item(type='Number', name='FrontDoor_MyNumber', label='FrontDoor MyNumber [%d]', icon='battery', groups=[], tags=[], link=None)
Would create Item(type='Number', name='FrontDoor_Movement', label='FrontDoor Movement [%d %%]', icon='battery', groups=['group1', 'group2'], tags=['tag1'], link='zwave:device:controller:node5:alarm_motion')
Would create Item(type='Number', name='FrontDoor_Temperature', label='FrontDoor Temperature [%d %%]', icon='battery', groups=[], tags=[], link='zwave:device:controller:node5:sensor_temperature')

Created items file

Number Room1_Door_MyNumber "Room1 Door MyNumber [%d]" <battery>
Number Room1_Door_Movement "Room1 Door Movement [%d %%]" <battery> (group1, group2) [tag1] {channel = "zwave:device:controller:node35:alarm_motion"}
Number Room1_Door_Temperature "Room1 Door Temperature [%d %%]" <battery> {channel = "zwave:device:controller:node35:sensor_temperature"}
Number Room2_Window_MyNumber "Room2 Window MyNumber [%d]" <battery>
Number Room2_Window_Movement "Room2 Window Movement [%d %%]" <battery> (group1, group2) [tag1] {channel = "zwave:device:controller:node15:alarm_motion"}
Number Room2_Window_Temperature "Room2 Window Temperature [%d %%]" <battery> {channel = "zwave:device:controller:node15:sensor_temperature"}
Number Room3_Window_MyNumber "Room3 Window MyNumber [%d]" <battery>
Number Room3_Window_Movement "Room3 Window Movement [%d %%]" <battery> (group1, group2) [tag1] {channel = "zwave:device:controller:node17:alarm_motion"}
Number Room3_Window_Temperature "Room3 Window Temperature [%d %%]" <battery> {channel = "zwave:device:controller:node17:sensor_temperature"}
Number Room1_Window_MyNumber "Room1 Window MyNumber [%d]" <battery>
Number Room1_Window_Movement "Room1 Window Movement [%d %%]" <battery> (group1, group2) [tag1] {channel = "zwave:device:controller:node3:alarm_motion"}
Number Room1_Window_Temperature "Room1 Window Temperature [%d %%]" <battery> {channel = "zwave:device:controller:node3:sensor_temperature"}
Number FrontDoor_MyNumber "FrontDoor MyNumber [%d]" <battery>
Number FrontDoor_Movement "FrontDoor Movement [%d %%]" <battery> (group1, group2) [tag1] {channel = "zwave:device:controller:node5:alarm_motion"}
Number FrontDoor_Temperature "FrontDoor Temperature [%d %%]" <battery> {channel = "zwave:device:controller:node5:sensor_temperature"}

Example openHAB rules

Example 1

import HABApp
from HABApp.core.events import ValueUpdateEvent, ValueChangeEvent
from HABApp.openhab.events import ItemStateEvent, ItemCommandEvent, ItemStateChangedEvent
from HABApp.openhab.items import SwitchItem, ContactItem, DatetimeItem

class MyOpenhabRule(HABApp.Rule):

 def __init__(self):
 super().__init__()

 # get items
 test_contact = ContactItem.get_item('TestContact')
 test_date_time = DatetimeItem.get_item('TestDateTime')
 test_switch = SwitchItem.get_item('TestSwitch')

 # Trigger on item updates
 test_contact.listen_event(self.item_state_update, ItemStateEvent)
 test_date_time.listen_event(self.item_state_update, ValueUpdateEvent)

 # Trigger on item changes
 test_contact.listen_event(self.item_state_change, ItemStateChangedEvent)
 test_date_time.listen_event(self.item_state_change, ValueChangeEvent)

 # Trigger on item commands
 test_switch.listen_event(self.item_command, ItemCommandEvent)

 def item_state_update(self, event):
 assert isinstance(event, ValueUpdateEvent)
 print(f'{event}')

 def item_state_change(self, event):
 assert isinstance(event, ValueChangeEvent)
 print(f'{event}')

 # interaction is available through self.openhab or self.oh
 self.openhab.send_command('TestItemCommand', 'ON')

 # example for interaction with openhab item type
 switch_item = SwitchItem.get_item('TestSwitch')
 if switch_item.is_on():
 switch_item.off()

 def item_command(self, event):
 assert isinstance(event, ItemCommandEvent)
 print(f'{event}')

 # interaction is available through self.openhab or self.oh
 self.oh.post_update('ReceivedCommand', str(event))

MyOpenhabRule()

Check status of things

This rule prints the status of all Things and shows how to subscribe to events of the Thing status

from HABApp import Rule
from HABApp.openhab.events import ThingStatusInfoChangedEvent
from HABApp.openhab.items import Thing
from HABApp.core.events import EventFilter

class CheckAllThings(Rule):
 def __init__(self):
 super().__init__()

 for thing in self.get_items(Thing):
 thing.listen_event(self.thing_status_changed, EventFilter(ThingStatusInfoChangedEvent))
 print(f'{thing.name}: {thing.status}')

 def thing_status_changed(self, event: ThingStatusInfoChangedEvent):
 print(f'{event.name} changed from {event.old_status} to {event.status}')

CheckAllThings()

Check status if thing is constant

Sometimes Things recover automatically from small outages. This rule only triggers when the Thing is constant
for 60 seconds.

from HABApp import Rule
from HABApp.core.events import ItemNoChangeEvent
from HABApp.openhab.items import Thing

class CheckThing(Rule):
 def __init__(self, name: str):
 super().__init__()

 self.thing = Thing.get_item(name)
 watcher = self.thing.watch_change(60)
 watcher.listen_event(self.thing_no_change)

 def thing_no_change(self, event: ItemNoChangeEvent):
 print(f'Thing {event.name} constant for {event.seconds}')
 print(f'Status: {self.thing.status}')

CheckThing('my:thing:uid')

Thing test_watch constant for 60
Status: ONLINE

MQTT

Interaction with the MQTT broker

Interaction with the MQTT broker is done through the self.mqtt object in the rule or through
the MqttItem. When receiving a topic for the first time a new MqttItem
will automatically be created.

[image: _images/mqtt.gif]

Rule Interface

	
class mqtt

	
	
publish(topic: str, payload: typing.Any[, qos: int = None, retain: bool = None]) → int

	Publish a value under a certain topic.

	Parameters:

	
	topic – MQTT topic

	payload – MQTT Payload

	qos (int) – QoS, can be 0, 1 or 2. If not specified value from configuration file will be used.

	retain (bool) – retain message. If not specified value from configuration file will be used.

	Returns:

	0 if successful

	
subscribe(self, topic: str[, qos: int = None]) → int

	Subscribe to a MQTT topic. Please note that subscriptions made this way are volatile,
and will only remain until the next disconnect.
For persistent subscriptions use the corresponding entry in the configuration file.
By default HABApp listens to all topics so the topics can be used in listen_event.

	Parameters:

	
	topic – MQTT topic to subscribe to

	qos – QoS, can be 0, 1 or 2. If not specified value from configuration file will be used.

	Returns:

	0 if successful

	
unsubscribe(self, topic: str) → int

	Unsubscribe from a MQTT topic

	Parameters:

	topic – MQTT topic

	Returns:

	0 if successful

Mqtt item types

Mqtt items have an additional publish method which make interaction with the mqtt broker easier.

from HABApp.mqtt.items import MqttItem
from HABApp.core.events import ValueChangeEvent

Messages with a retain flag will automatically create a corresponding item in HABApp.
All other items have to be created manually
my_mqtt_item = MqttItem.get_create_item('test/topic')

easy to publish values
my_mqtt_item.publish('new_value')

comparing the item to get the state works, too
if my_mqtt_item == 'test':
 pass # do something

MqttItem

[image: Inheritance diagram of HABApp.mqtt.items.MqttItem]

	
class MqttItem()

	A simple item that represents a topic and a value

	
classmethod get_create_item(name, initial_value=None)

	Creates a new item in HABApp and returns it or returns the already existing one with the given name

	Parameters:

	
	name (str) – item name

	initial_value – state the item will have if it gets created

	Return type:

	MqttItem

	Returns:

	item

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
publish(payload, qos=None, retain=None)

	Publish the payload under the topic from the item.

	Parameters:

	
	payload – MQTT Payload

	qos (Optional[int]) – QoS, can be 0, 1 or 2. If not specified value from configuration file will be used.

	retain (Optional[bool]) – retain message. If not specified value from configuration file will be used.

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

MqttPairItem

An item that consolidates a topic that reports states from a device and a topic that is used to write to a device.
It is created on the topic that reports the state from the device.

from HABApp.mqtt.items import MqttPairItem

MqttPairItem works out of the box with zigbee2mqtt
mqtt = MqttPairItem.get_create_item("zigbee2mqtt/my_bulb/brightness")
mqtt.publish("255") # <-- will use the write topic

equivalent to
mqtt = MqttPairItem.get_create_item("zigbee2mqtt/my_bulb/brightness", write_topic="zigbee2mqtt/my_bulb/set/brightness")

[image: Inheritance diagram of HABApp.mqtt.items.MqttPairItem]

	
class MqttPairItem()

	An item that represents both a topic that is used to read
and a corresponding topic that is used to write values

	
classmethod get_create_item(name, write_topic=None, initial_value=None)

	Creates a new item in HABApp and returns it or returns the already existing one with the given name.
HABApp tries to automatically derive the write topic from the item name. In cases where this does not
work it can be specified manually.

	Parameters:

	
	name (str) – item name (topic that reports the state)

	write_topic (Optional[str]) – topic that is used to write values or None (default) to build it automatically

	initial_value – state the item will have if it gets created

	Return type:

	MqttPairItem

	Returns:

	item

	
classmethod get_item(name)

	Returns an already existing item. If it does not exist or has a different item type an exception will occur.

	Parameters:

	name (str) – Name of the item

	
get_value(default_value=None)

	Return the value of the item. This is a helper function that returns a default
in case the item value is None.

	Parameters:

	default_value – Return this value if the item value is None

	Return type:

	Any

	Returns:

	value of the item

	
listen_event(callback, event_filter=None)

	Register an event listener which listens to all event that the item receives

	Parameters:

	
	callback (Callable[[Any], Any]) – callback that accepts one parameter which will contain the event

	event_filter (Optional[TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)]) – Event filter. This is typically ValueUpdateEventFilter or
ValueChangeEventFilter which will also trigger on changes/update from openhab
or mqtt. Additionally it can be an instance of EventFilter which additionally
filters on the values of the event. It is also possible to group filters logically with, e.g.
AndFilterGroup and OrFilterGroup

	Return type:

	TypeVar(HINT_EVENT_BUS_LISTENER, bound= EventBusListener)

	
post_value(new_value)

	Set a new value and post appropriate events on the HABApp event bus
(ValueUpdateEvent, ValueChangeEvent)

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
post_value_if(new_value, *, equal=<MISSING>, eq=<MISSING>, not_equal=<MISSING>, ne=<MISSING>, lower_than=<MISSING>, lt=<MISSING>, lower_equal=<MISSING>, le=<MISSING>, greater_than=<MISSING>, gt=<MISSING>, greater_equal=<MISSING>, ge=<MISSING>, is_=<MISSING>, is_not=<MISSING>)

	Post a value depending on the current state of the item. If one of the comparisons is true the new state
will be posted.

	Parameters:

	
	new_value – new value to post

	equal – item state has to be equal to the passed value

	eq – item state has to be equal to the passed value

	not_equal – item state has to be not equal to the passed value

	ne – item state has to be not equal to the passed value

	lower_than – item state has to be lower than the passed value

	lt – item state has to be lower than the passed value

	lower_equal – item state has to be lower equal the passed value

	le – item state has to be lower equal the passed value

	greater_than – item state has to be greater than the passed value

	gt – item state has to be greater than the passed value

	greater_equal – item state has to be greater equal the passed value

	ge – item state has to be greater equal the passed value

	is – item state has to be the same object as the passt value (e.g. None)

	is_not – item state has to be not the same object as the passt value (e.g. None)

	Return type:

	bool

	Returns:

	True if the new value was posted else False

	
publish(payload, qos=None, retain=None)

	Publish the payload under the write topic from the item.

	Parameters:

	
	payload – MQTT Payload

	qos (Optional[int]) – QoS, can be 0, 1 or 2. If not specified value from configuration file will be used.

	retain (Optional[bool]) – retain message. If not specified value from configuration file will be used.

	Returns:

	0 if successful

	
set_value(new_value)

	Set a new value without creating events on the event bus

	Parameters:

	new_value – new value of the item

	Return type:

	bool

	Returns:

	True if state has changed

	
watch_change(secs)

	Generate an event if the item does not change for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoChangeWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
watch_update(secs)

	Generate an event if the item does not receive and update for a certain period of time.
Has to be called from inside a rule function.

	Parameters:

	secs (Union[int, float, timedelta]) – secs after which the event will occur, max 1 decimal digit for floats

	Return type:

	ItemNoUpdateWatch

	Returns:

	The watch obj which can be used to cancel the watch

	
property last_change: DateTime

	
	Returns:

	Timestamp of the last time when the item has been changed (read only)

	
property last_update: DateTime

	
	Returns:

	Timestamp of the last time when the item has been updated (read only)

	
property name: str

	
	Returns:

	Name of the item (read only)

Mqtt event types

MqttValueUpdateEvent

Since this event inherits from ValueUpdateEvent you can listen to ValueUpdateEvent
and it will also trigger for MqttValueUpdateEvent.

[image: Inheritance diagram of HABApp.mqtt.events.MqttValueUpdateEvent]

	
class MqttValueUpdateEvent(name, value)

	

MqttValueChangeEvent

Since this event inherits from ValueChangeEvent you can listen to ValueChangeEvent
and it will also trigger for MqttValueUpdateEvent.

[image: Inheritance diagram of HABApp.mqtt.events.MqttValueChangeEvent]

	
class MqttValueChangeEvent(name, value, old_value)

	

Example MQTT rule

import datetime
import random

import HABApp
from HABApp.core.events import ValueUpdateEvent, ValueUpdateEventFilter
from HABApp.mqtt.items import MqttItem

class ExampleMqttTestRule(HABApp.Rule):
 def __init__(self):
 super().__init__()

 self.run.every(
 start_time=datetime.timedelta(seconds=10),
 interval=datetime.timedelta(seconds=20),
 callback=self.publish_rand_value
)

 self.my_mqtt_item = MqttItem.get_create_item('test/test')

 self.listen_event('test/test', self.topic_updated, ValueUpdateEventFilter())

 def publish_rand_value(self):
 print('test mqtt_publish')
 self.my_mqtt_item.publish(str(random.randint(0, 1000)))

 def topic_updated(self, event):
 assert isinstance(event, ValueUpdateEvent), type(event)
 print(f'mqtt topic "test/test" updated to {event.value}')

ExampleMqttTestRule()

Advanced Usage

HABApp Topics

There are several internal topics which can be used to react to HABApp changes from within rules.
An example would be dynamically reloading files or an own notifier in case there are errors (e.g. Pushover).

	Topic

	Description

	Events

	HABApp.Files

	The corresponding events trigger a load/unload of the file specified in the event

	RequestFileLoadEvent and RequestFileUnloadEvent

	HABApp.Infos

	All infos in functions and rules of HABApp create an according event

	str

	HABApp.Warnings

	All warnings in functions (e.g. caught exceptions) and rules of HABApp create an according event

	HABAppException or str

	HABApp.Errors

	All errors in functions and rules of HABApp create an according event. Use this topic to create an own notifier
in case of errors (e.g. Pushover).

	HABAppException or str

	
class RequestFileLoadEvent(name)

	Request (re-) loading of the specified file

	Variables:

	filename (str) – relative filename

	
class RequestFileUnloadEvent(name)

	Request unloading of the specified file

	Variables:

	filename (str) – relative filename

	
class HABAppException(func_name, exception, traceback)

	Contains information about an Exception that has occurred in HABApp

	Variables:

	
	func_name (str) – name of the function where the error occurred

	traceback (str) – traceback

	exception (Exception) – Exception

	
to_str()

	Create a readable str with all information

	Return type:

	str

File properties

For every HABApp file it is possible to specify some properties.
The properties are specified as a comment (prefixed with #) somewhere at the beginning of the file
and are in the yml format. They keyword HABApp can be arbitrarily intended.

Hint

File names are not absolute but relative with a folder specific prefix.
It’s best to use the file name from the RequestFileLoadEvent
from the HABApp event bus.

Configuration format

HABApp:
 depends on:
 - filename
 reloads on:
 - filename

	Property

	Description

	depends on

	The file will only get loaded when all of the files specified as dependencies have been successfully loaded

	reloads on

	The file will get automatically reloaded when one of the files specified will be reloaded

Example

Some other stuff
#
HABApp:
depends on:
- rules/rule_file.py
reloads on:
- params/param_file.yml

import HABApp
...

Running Python code on startup

It’s possible to run arbitrary code during the startup of HABApp. This can be achieved by creating a module/package
called HABAppUser. HABApp will try to import it before loading the configuration and thus execute the code.
The module/package must be importable so it has to be in one of the PATH/PYTHONPATH folders or in the current
working directory.

Invoking openHAB actions

The openHAB REST interface does not expose actions [https://www.openhab.org/docs/configuration/actions.html],
and thus there is no way to trigger them from HABApp. Even if it is not possible to create an openHAB item that
directly triggers the action, there is a way to work around it with additional items within openHAB.
An additional openHAB (note not HABapp) rule listens to changes on those items and invokes the appropriate
openHAB actions.
On the HABApp side these actions are indirectly executed by setting the values for those items.

Below is an example how to invoke the openHAB Audio and Voice actions.

First, define a couple of items to accept values from HABApp, and place them in /etc/openhab2/items/habapp-bridge.items:

String AudioVoiceSinkName

String TextToSpeechMessage
String AudioFileLocation
String AudioStreamUrl

Second, create the JSR223 script to invoke the actions upon changes in the values of the items above.

from core import osgi
from core.jsr223 import scope
from core.rules import rule
from core.triggers import when
from org.eclipse.smarthome.model.script.actions import Audio
from org.eclipse.smarthome.model.script.actions import Voice

SINK_ITEM_NAME = 'AudioVoiceSinkName'

@rule("Play voice TTS message")
@when("Item TextToSpeechMessage changed")
def onTextToSpeechMessageChanged(event):
 ttl = scope.items[event.itemName].toString()
 if ttl is not None and ttl != '':
 Voice.say(ttl, None, scope.items[SINK_ITEM_NAME].toString())

 # reset the item to wait for the next message.
 scope.events.sendCommand(event.itemName, '')

@rule("Play audio stream URL")
@when("Item AudioStreamUrl changed")
def onAudioStreamURLChanged(event):
 stream_url = scope.items[event.itemName].toString()
 if stream_url is not None and stream_url != '':
 Audio.playStream(scope.items[SINK_ITEM_NAME].toString(), stream_url)

 # reset the item to wait for the next message.
 scope.events.sendCommand(event.itemName, '')

@rule("Play local audio file")
@when("Item AudioFileLocation changed")
def onAudioFileLocationChanged(event):
 file_location = scope.items[event.itemName].toString()
 if file_location is not None and file_location != '':
 Audio.playSound(scope.items[SINK_ITEM_NAME].toString(), file_location)

 # reset the item to wait for the next message.
 scope.events.sendCommand(event.itemName, '')

Finally, define the HABApp functions to indirectly invoke the actions:

def play_local_audio_file(sink_name: str, file_location: str):
 """ Plays a local audio file on the given audio sink. """
 HABApp.openhab.interface_sync.send_command(ACTION_AUDIO_SINK_ITEM_NAME, sink_name)
 HABApp.openhab.interface_sync.send_command(ACTION_AUDIO_LOCAL_FILE_LOCATION_ITEM_NAME, file_location)

def play_stream_url(sink_name: str, url: str):
 """ Plays a stream URL on the given audio sink. """
 HABApp.openhab.interface_sync.send_command(ACTION_AUDIO_SINK_ITEM_NAME, sink_name)
 HABApp.openhab.interface_sync.send_command(ACTION_AUDIO_STREAM_URL_ITEM_NAME, url)

def play_text_to_speech_message(sink_name: str, tts: str):
 """ Plays a text to speech message on the given audio sink. """
 HABApp.openhab.interface_sync.send_command(ACTION_AUDIO_SINK_ITEM_NAME, sink_name)
 HABApp.openhab.interface_sync.send_command(ACTION_TEXT_TO_SPEECH_MESSAGE_ITEM_NAME, tts)

Mocking openHAB items and events for tests

It is possible to create mock items in HABApp which do not exist in openHAB to create unit tests for rules and libraries.
Ensure that this mechanism is only used for testing because since the items will not exist in openHAB they will not get
updated which can lead to hard to track down errors.

Examples:

Add an openHAB mock item to the item registry

import HABApp
from HABApp.openhab.items import SwitchItem

item = SwitchItem('my_switch', 'ON')
HABApp.core.Items.add_item(item)

Remove the mock item from the registry:

HABApp.core.Items.pop_item('my_switch')

Note that there are some item methods that encapsulate communication with openhab
(e.g.: SwitchItem.on(), SwitchItem.off(), and DimmerItem.percentage())
These currently do not work with the mock items. The state has to be changed like
any internal item.

import HABApp
from HABApp.openhab.items import SwitchItem
from HABApp.openhab.definitions import OnOffValue

item = SwitchItem('my_switch', 'ON')
HABApp.core.Items.add_item(item)

item.set_value(OnOffValue.ON) # without bus event
item.post_value(OnOffValue.OFF) # with bus event

asyncio

Warning

Please make sure you know what you are doing when using async functions!

If you have no asyncio experience please do not use this!
The use of blocking calls in async functions will prevent HABApp from working properly!

async http

Async http calls are available through the self.async_http object in rule instances.

Functions

	
delete(url, params=None, **kwargs)

	http delete request

	Parameters:

	
	url (str) – Request URL

	params (Optional[Mapping[str, str]]) – Mapping, iterable of tuple of key/value pairs (e.g. dict)
to be sent as parameters in the query string of the new request.
Params example [https://docs.aiohttp.org/en/stable/client_quickstart.html#passing-parameters-in-urls]

	kwargs (Any) – See aiohttp request [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.request]
for further possible kwargs

	Return type:

	_RequestContextManager

	Returns:

	awaitable

	
get(url, params=None, **kwargs)

	http get request

	Parameters:

	
	url (str) – Request URL

	params (Optional[Mapping[str, str]]) – Mapping, iterable of tuple of key/value pairs (e.g. dict)
to be sent as parameters in the query string of the new request.
Params example [https://docs.aiohttp.org/en/stable/client_quickstart.html#passing-parameters-in-urls]

	kwargs (Any) – See aiohttp request [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.request]
for further possible kwargs

	Return type:

	_RequestContextManager

	Returns:

	awaitable

	
get_client_session()

	Return the aiohttp
client session object [https://docs.aiohttp.org/en/stable/client_reference.html#client-session]
for use in aiohttp libraries

	Return type:

	ClientSession

	Returns:

	session object

	
post(url, params=None, data=None, json=None, **kwargs)

	http post request

	Parameters:

	
	url (str) – Request URL

	params (Optional[Mapping[str, str]]) – Mapping, iterable of tuple of key/value pairs (e.g. dict)
to be sent as parameters in the query string of the new request.
Params example [https://docs.aiohttp.org/en/stable/client_quickstart.html#passing-parameters-in-urls]

	data (Optional[Any]) – Dictionary, bytes, or file-like object to send in the body of the request
(optional)

	json (Optional[Any]) – Any json compatible python object, json and data parameters could not be used at the same time.
(optional)

	kwargs (Any) – See aiohttp request [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.request]
for further possible kwargs

	Return type:

	_RequestContextManager

	Returns:

	awaitable

	
put(url, params=None, data=None, json=None, **kwargs)

	http put request

	Parameters:

	
	url (str) – Request URL

	params (Optional[Mapping[str, str]]) – Mapping, iterable of tuple of key/value pairs (e.g. dict)
to be sent as parameters in the query string of the new request.
Params example [https://docs.aiohttp.org/en/stable/client_quickstart.html#passing-parameters-in-urls]

	data (Optional[Any]) – Dictionary, bytes, or file-like object to send in the body of the request
(optional)

	json (Optional[Any]) – Any json compatible python object, json and data parameters could not be used at the same time.
(optional)

	kwargs (Any) – See aiohttp request [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.request]
for further possible kwargs

	Return type:

	_RequestContextManager

	Returns:

	awaitable

Examples

import asyncio

import HABApp

class AsyncRule(HABApp.Rule):

 def __init__(self):
 super().__init__()

 self.run.soon(self.async_func)

 async def async_func(self):
 await asyncio.sleep(2)
 async with self.async_http.get('http://httpbin.org/get') as resp:
 print(resp)
 print(await resp.text())

AsyncRule()

util - helpers and utilities

The util package contains useful classes which make rule creation easier.

Functions

min

This function is very useful together with the all possible functions of ValueMode for the
MultiModeItem.
For example it can be used to automatically disable or calculate the new value of the ValueMode
It behaves like the standard python function except that it will ignore None values which are sometimes set as the item state.

from HABApp.util.functions import min

print(min(1, 2, None))

	
min(*args, default=None)

	Behaves like the built in min function but ignores any None values. e.g. min([1, None, 2]) == 1.
If the iterable is empty default will be returned.

	Parameters:

	
	args – Single iterable or 1..n arguments

	default – Value that will be returned if the iterable is empty

	Returns:

	min value

max

This function is very useful together with the all possible functions of ValueMode for the
MultiModeItem.
For example it can be used to automatically disable or calculate the new value of the ValueMode
It behaves like the standard python function except that it will ignore None values which are sometimes set as the item state.

from HABApp.util.functions import max

print(max(1, 2, None))

	
max(*args, default=None)

	Behaves like the built in max function but ignores any None values. e.g. max([1, None, 2]) == 2.
If the iterable is empty default will be returned.

	Parameters:

	
	args – Single iterable or 1..n arguments

	default – Value that will be returned if the iterable is empty

	Returns:

	max value

rgb_to_hsb

Converts a rgb value to hsb color space

from HABApp.util.functions import rgb_to_hsb

print(rgb_to_hsb(224, 201, 219))

	
rgb_to_hsb(r, g, b, max_rgb_value=255, ndigits=2)

	Convert from rgb to hsb/hsv

	Parameters:

	
	r (Union[int, float]) – red value

	g (Union[int, float]) – green value

	b (Union[int, float]) – blue value

	max_rgb_value (int) – maximal possible rgb value (e.g. 255 for 8 bit or 65.535 for 16bit values)

	ndigits (Optional[int]) – Round the hsb values to the specified digits, None to disable rounding

	Return type:

	Tuple[float, float, float]

	Returns:

	Values for hue, saturation and brightness / value

hsb_to_rgb

Converts a hsb value to the rgb color space

from HABApp.util.functions import hsb_to_rgb

print(hsb_to_rgb(150, 40, 100))

	
hsb_to_rgb(h, s, b, max_rgb_value=255)

	Convert from rgb to hsv/hsb

	Parameters:

	
	h – hue

	s – saturation

	b – brightness / value

	max_rgb_value – maximal value for the returned rgb values (e.g. 255 for 8 bit or 65.535 16bit values)

	Return type:

	Tuple[int, int, int]

	Returns:

	Values for red, green and blue

Statistics

Example

s = Statistics(max_samples=4)
for i in range(1,4):
 s.add_value(i)
 print(s)

<Statistics sum: 1.0, min: 1.00, max: 1.00, mean: 1.00, median: 1.00>
<Statistics sum: 3.0, min: 1.00, max: 2.00, mean: 1.50, median: 1.50>
<Statistics sum: 6.0, min: 1.00, max: 3.00, mean: 2.00, median: 2.00>

Documentation

	
class Statistics(max_age=None, max_samples=None)

	Calculate mathematical statistics of numerical values.

	Variables:

	
	sum – sum of all values

	min – minimum of all values

	max – maximum of all values

	mean – mean of all values

	median – median of all values

	last_value – last added value

	last_change – timestamp the last time a value was added

	
update()

	update values without adding a new value

	
add_value(value)

	Add a new value and recalculate statistical values

	Parameters:

	value – new value

Fade

Fade is a helper class which allows to easily fade a value up or down.

Example

This example shows how to fade a Dimmer from 0 to 100 in 30 secs

from HABApp import Rule
from HABApp.openhab.items import DimmerItem
from HABApp.util import Fade

class FadeExample(Rule):
 def __init__(self):
 super().__init__()
 self.dimmer = DimmerItem.get_item('Dimmer1')
 self.fade = Fade(callback=self.fade_value) # self.dimmer.percent would also be a good callback in this example

 # Setup the fade and schedule its execution
 # Fade from 0 to 100 in 30s
 self.fade.setup(0, 100, 30).schedule_fade()

 def fade_value(self, value):
 self.dimmer.percent(value)

FadeExample()

This example shows how to fade three values together (e.g. for an RGB strip)

from HABApp import Rule
from HABApp.openhab.items import DimmerItem
from HABApp.util import Fade

class Fade3Example(Rule):
 def __init__(self):
 super().__init__()
 self.fade1 = Fade(callback=self.fade_value)
 self.fade2 = Fade()
 self.fade3 = Fade()

 # Setup the fades and schedule the execution of one fade where the value gets updated every sec
 self.fade3.setup(0, 100, 30)
 self.fade2.setup(0, 50, 30)
 self.fade1.setup(0, 25, 30, min_step_duration=1).schedule_fade()

 def fade_value(self, value):
 value1 = value
 value2 = self.fade2.get_value()
 value3 = self.fade3.get_value()

Fade3Example()

Documentation

	
class Fade(callback=None, min_value=0, max_value=100)

	Helper to easily fade values up/down

	Variables:

	
	min_value – minimum valid value for the fade value

	max_value – maximum valid value for the fade value

	callback – Function with one argument that will be automatically called with the new values when the scheduled
fade runs

	
setup(start_value, stop_value, duration, min_step_duration=0.2, now=None)

	Calculates everything that is needed to fade a value

	Parameters:

	
	start_value (Union[int, float]) – Start value

	stop_value (Union[int, float]) – Stop value

	duration (Union[int, float, timedelta]) – How long shall the fade take

	min_step_duration (float) – minimum step duration (min 0.2 secs)

	now (Optional[float]) – time.time() timestamp to sync multiple fades together

	Return type:

	Fade

	
get_value(now=None)

	Returns the current value. If the fade is finished it will always return the stop value.

	Parameters:

	now (Optional[float]) – time.time() timestamp for which the value shall be returned. Can be used to sync multiple fades
together. Not required.

	Return type:

	float

	Returns:

	current value

	
property is_finished: bool

	True if the fade is finished

	
schedule_fade()

	Automatically run the fade with the Scheduler. The callback can be used to set the current fade value
e.g. on an item. Calling this on a running fade will restart the fade

	Return type:

	Fade

	
stop_fade()

	Stop the scheduled fade. This can be called multiple times without error

EventListenerGroup

EventListenerGroup is a helper class which allows to subscribe to multiple items at once.
All subscriptions can be canceled together, too.
This is useful if e.g. something has to be done once after a sensor reports a value.

Example

This is a rule which will turn on the lights once (!) in a room on the first movement in the morning.
The lights will only turn on after 4 and before 8 and two movement sensors are used to pick up movement.

from datetime import time

from HABApp import Rule
from HABApp.core.events import ValueChangeEventFilter
from HABApp.openhab.items import SwitchItem, NumberItem
from HABApp.util import EventListenerGroup

class EventListenerGroupExample(Rule):
 def __init__(self):
 super().__init__()
 self.lights = SwitchItem.get_item('RoomLights')
 self.sensor_move_1 = NumberItem.get_item('MovementSensor1')
 self.sensor_move_2 = NumberItem.get_item('MovementSensor2')

 # use a list of items which will be subscribed with the same callback and event
 self.listeners = EventListenerGroup().add_listener(
 [self.sensor_move_1, self.sensor_move_2], self.sensor_changed, ValueChangeEventFilter())

 self.run.on_every_day(time(4), self.listen_sensors)
 self.run.on_every_day(time(8), self.sensors_cancel)

 def listen_sensors(self):
 self.listeners.listen()

 def sensors_cancel(self):
 self.listeners.cancel()

 def sensor_changed(self, event):
 self.listeners.cancel()
 self.lights.on()

EventListenerGroupExample()

Documentation

	
class EventListenerGroup

	Helper to create/cancel multiple event listeners simultaneously

	
property active: bool

	
	Returns:

	True if the listeners are currently active

	
listen()

	Create all event listeners. If the event listeners are already active this will do nothing.

	
cancel()

	Cancel the active event listeners. If the event listeners are not active this will do nothing.

	
activate_listener(name)

	Resume a previously deactivated listener creator in the group.

	Parameters:

	name (str) – item name or alias of the listener

	Returns:

	True if it was activated, False if it was already active

	
deactivate_listener(name, cancel_if_active=True)

	Exempt the listener creator from further listener/cancel calls

	Parameters:

	
	name (str) – item name or alias of the listener

	cancel_if_active – Cancel the listener if it is active

	Returns:

	True if it was deactivated, False if it was already deactivated

	
add_listener(item, callback, event_filter, alias=None)

	Add an event listener to the group

	Parameters:

	
	item (Union[TypeVar(HINT_ITEM_OBJ, bound= BaseItem), Iterable[TypeVar(HINT_ITEM_OBJ, bound= BaseItem)]]) – Single or multiple items

	callback (Callable[[Any], Any]) – Callback for the item(s)

	event_filter (TypeVar(HINT_EVENT_FILTER_OBJ, bound= EventFilterBase)) – Event filter for the item(s)

	alias (Optional[str]) – Alias if an item with the same name does already exist (e.g. if different callbacks shall be
created for the same item)

	Return type:

	EventListenerGroup

	Returns:

	self

	
add_no_update_watcher(item, callback, seconds, alias=None)

	
	Add an no update watcher to the group. On listen this will create a no update watcher and
	the corresponding event listener that will trigger the callback

	Parameters:

	
	item (Union[TypeVar(HINT_ITEM_OBJ, bound= BaseItem), Iterable[TypeVar(HINT_ITEM_OBJ, bound= BaseItem)]]) – Single or multiple items

	callback (Callable[[Any], Any]) – Callback for the item(s)

	seconds (Union[int, float, timedelta]) – No update time for the no update watcher

	alias (Optional[str]) – Alias if an item with the same name does already exist (e.g. if different callbacks shall be
created for the same item)

	Return type:

	EventListenerGroup

	Returns:

	self

	
add_no_change_watcher(item, callback, seconds, alias=None)

	
	Add an no change watcher to the group. On listen this this will create a no change watcher and
	the corresponding event listener that will trigger the callback

	Parameters:

	
	item (Union[TypeVar(HINT_ITEM_OBJ, bound= BaseItem), Iterable[TypeVar(HINT_ITEM_OBJ, bound= BaseItem)]]) – Single or multiple items

	callback (Callable[[Any], Any]) – Callback for the item(s)

	seconds (Union[int, float, timedelta]) – No update time for the no change watcher

	alias (Optional[str]) – Alias if an item with the same name does already exist (e.g. if different callbacks shall be
created for the same item)

	Return type:

	EventListenerGroup

	Returns:

	self

MultiModeItem

Prioritizer item which automatically switches between values with different priorities.
Very useful when different states or modes overlap, e.g. automatic and manual mode. etc.

Basic Example

import HABApp
from HABApp.core.events import ValueUpdateEventFilter
from HABApp.util.multimode import MultiModeItem, ValueMode

class MyMultiModeItemTestRule(HABApp.Rule):
 def __init__(self):
 super().__init__()

 # create a new MultiModeItem
 item = MultiModeItem.get_create_item('MultiModeTestItem')
 item.listen_event(self.item_update, ValueUpdateEventFilter())

 # create two different modes which we will use and add them to the item
 auto = ValueMode('Automatic', initial_value=5)
 manu = ValueMode('Manual', initial_value=0)
 # Add the auto mode with priority 0 and the manual mode with priority 10
 item.add_mode(0, auto).add_mode(10, manu)

 # This shows how to enable/disable a mode and how to get a mode from the item
 print('disable/enable the higher priority mode')
 item.get_mode('manual').set_enabled(False) # disable mode
 item.get_mode('manual').set_value(11) # setting a value will enable it again

 # This shows that changes of the lower priority is only shown when
 # the mode with the higher priority gets disabled
 print('')
 print('Set value of lower priority')
 auto.set_value(55)
 print('Disable higher priority')
 manu.set_enabled(False)

 def item_update(self, event):
 print(f'State: {event.value}')

MyMultiModeItemTestRule()

disable/enable the higher priority mode
State: 5
State: 11

Set value of lower priority
State: 11
Disable higher priority
State: 55

Advanced Example

import logging
import HABApp
from HABApp.core.events import ValueUpdateEventFilter
from HABApp.util.multimode import MultiModeItem, ValueMode

class MyMultiModeItemTestRule(HABApp.Rule):
 def __init__(self):
 super().__init__()

 # create a new MultiModeItem
 item = MultiModeItem.get_create_item('MultiModeTestItem')
 item.listen_event(self.item_update, ValueUpdateEventFilter())

 # helper to print the heading so we have a nice output
 def print_heading(_heading):
 print('')
 print('-' * 80)
 print(_heading)
 print('-' * 80)
 for p, m in item.all_modes():
 print(f'Prio {p:2d}: {m}')
 print('')

 log = logging.getLogger('AdvancedMultiMode')

 # create modes and add them
 auto = ValueMode('Automatic', initial_value=5, logger=log)
 manu = ValueMode('Manual', initial_value=10, logger=log)
 item.add_mode(0, auto).add_mode(10, manu)

 # it is possible to automatically disable a mode
 # this will disable the manual mode if the automatic mode
 # sets a value greater equal manual mode
 print_heading('Automatically disable mode')

 # A custom function can also disable the mode:
 manu.auto_disable_func = lambda low, own: low >= own

 auto.set_value(11) # <-- manual now gets disabled because
 auto.set_value(4) # the lower priority value is >= itself

 # It is possible to use functions to calculate the new value for a mode.
 # E.g. shutter control and the manual mode moves the shades. If it's dark the automatic
 # mode closes the shutter again. This could be achieved by automatically disabling the
 # manual mode or if the state should be remembered then the max function should be used

 # create a move and use the max function for output calculation
 manu = ValueMode('Manual', initial_value=5, logger=log, calc_value_func=max)
 item.add_mode(10, manu) # overwrite the earlier added mode

 print_heading('Use of functions')

 auto.set_value(7) # manu uses max, so the value from auto is used
 auto.set_value(3)

 def item_update(self, event):
 print(f'Item value: {event.value}')

MyMultiModeItemTestRule()

--
Automatically disable mode
--
Prio 0: <ValueMode Automatic enabled: True, value: 5>
Prio 10: <ValueMode Manual enabled: True, value: 10>

[AdvancedMultiMode] INFO | [x] Automatic: 11
[AdvancedMultiMode] INFO | [] Manual (function)
Item value: 11
[AdvancedMultiMode] INFO | [x] Automatic: 4
Item value: 4

--
Use of functions
--
Prio 0: <ValueMode Automatic enabled: True, value: 4>
Prio 10: <ValueMode Manual enabled: True, value: 5>

[AdvancedMultiMode] INFO | [x] Automatic: 7
Item value: 7
[AdvancedMultiMode] INFO | [x] Automatic: 3
Item value: 5

Example SwitchItemValueMode

The SwitchItemMode is same as ValueMode but enabled/disabled of the mode is controlled by a openHAB
SwitchItem. This is very useful if the mode shall be deactivated from the openHAB sitemaps.

import HABApp
from HABApp.openhab.items import SwitchItem
from HABApp.util.multimode import MultiModeItem, SwitchItemValueMode, ValueMode

class MyMultiModeItemTestRule(HABApp.Rule):
 def __init__(self):
 super().__init__()

 # create a new MultiModeItem
 item = MultiModeItem.get_create_item('MultiModeTestItem')

 # this switch allows to enable/disable the mode
 switch = SwitchItem.get_item('Automatic_Enabled')
 print(f'Switch is {switch}')

 # this is how the switch gets linked to the mode
 # if the switch is on, the mode is on, too
 mode = SwitchItemValueMode('Automatic', switch)
 print(mode)

 # Use invert_switch if the desired behaviour is
 # if the switch is off, the mode is on
 mode = SwitchItemValueMode('AutomaticOff', switch, invert_switch=True)
 print(mode)

 # This shows how the SwitchItemValueMode can be used to disable any logic except for the manual mode.
 # Now everything can be enabled/disabled from the openHAB sitemap
 item.add_mode(100, mode)
 item.add_mode(101, ValueMode('Manual'))

MyMultiModeItemTestRule()

Switch is ON
<SwitchItemValueMode Automatic enabled: True, value: None>
<SwitchItemValueMode AutomaticOff enabled: False, value: None>

Documentation

MultiModeItem

	
class MultiModeItem()

	Prioritizer Item

	
classmethod get_create_item(name, initial_value=None, default_value=<MISSING>)

	Creates a new item in HABApp and returns it or returns the already existing one with the given name

	Parameters:

	
	name (str) – item name

	initial_value – state the item will have if it gets created

	default_value – Default value that will be sent if no mode is active

	Return type:

	MultiModeItem

	Returns:

	The created or existing item

	
remove_mode(name)

	Remove mode if it exists

	Parameters:

	name (str) – name of the mode (case-insensitive)

	Return type:

	bool

	Returns:

	True if something was removed, False if nothing was found

	
add_mode(priority, mode)

	Add a new mode to the item, if it already exists it will be overwritten

	Parameters:

	
	priority (int) – priority of the mode

	mode (TypeVar(HINT_BASE_MODE, bound= BaseMode)) – instance of the MultiMode class

	Return type:

	MultiModeItem

	
all_modes()

	Returns a sorted list containing tuples with the priority and the mode

	Return type:

	List[Tuple[int, TypeVar(HINT_BASE_MODE, bound= BaseMode)]]

	Returns:

	List with priorities and modes

	
get_mode(name)

	Returns a created mode

	Parameters:

	name (str) – name of the mode (case insensitive)

	Return type:

	TypeVar(HINT_BASE_MODE, bound= BaseMode)

	Returns:

	The requested MultiModeValue

	
calculate_value()

	Recalculate the value. If the new value is not MISSING the calculated value will be set as the item
state and the corresponding events will be generated.

	Return type:

	Any

	Returns:

	new value

ValueMode

	
class ValueMode(name, initial_value=None, enabled=None, enable_on_value=True, logger=None, auto_disable_after=None, auto_disable_func=None, calc_value_func=None)

	
	Variables:

	
	last_update (datetime.datetime) – Timestamp of the last update/enable of this value

	auto_disable_after (Optional[datetime.timedelta]) – Automatically disable this mode after
a given timedelta on the next recalculation

	auto_disable_func (Optional[Callable[[Any, Any], bool]]) – Function which can be used to disable this mode. Any function that accepts two
Arguments can be used. First arg is value with lower priority,
second argument is own value. Return True to disable this mode.

	calc_value_func (Optional[Callable[[Any, Any], Any]]) – Function to calculate the new value (e.g. min or max). Any function that accepts
two Arguments can be used. First arg is value with lower priority,
second argument is own value.

	
property value

	Returns the current value

	
property enabled: bool

	Returns if the value is enabled

	
set_value(value, only_on_change=False)

	Set new value and recalculate overall value. If enable_on_value is set, setting a value will also
enable the mode.

	Parameters:

	
	value – new value

	only_on_change (bool) – will set/enable the mode only if value differs or the mode is disabled

	Returns:

	False if the value was not set, True otherwise

	
set_enabled(value, only_on_change=False)

	Enable or disable this value and recalculate overall value

	Parameters:

	
	value (bool) – True/False

	only_on_change (bool) – enable only on change

	Return type:

	bool

	Returns:

	True if the value was set else False

	
cancel()

	Remove the mode from the parent MultiModeItem and stop processing it

SwitchItemValueMode

	
class SwitchItemValueMode(name, switch_item, invert_switch=False, initial_value=None, logger=None, auto_disable_after=None, auto_disable_func=None, calc_value_func=None)

	SwitchItemMode, same as ValueMode but enabled/disabled of the mode is controlled by a OpenHAB
SwitchItem

	Variables:

	
	last_update (datetime.datetime) – Timestamp of the last update/enable of this value

	auto_disable_after (Optional[datetime.timedelta]) – Automatically disable this mode after
a given timedelta on the next recalculation

	auto_disable_func (Optional[Callable[[Any, Any], bool]]) – Function which can be used to disable this mode. Any function that accepts two
Arguments can be used. First arg is value with lower priority,
second argument is own value. Return True to disable this mode.

	calc_value_func (Optional[Callable[[Any, Any], Any]]) – Function to calculate the new value (e.g. min or max). Any function that accepts
two Arguments can be used. First arg is value with lower priority,
second argument is own value.

	
cancel()

	Remove the mode from the parent MultiModeItem and stop processing it

	
property enabled: bool

	Returns if the value is enabled

	
set_value(value, only_on_change=False)

	Set new value and recalculate overall value. If enable_on_value is set, setting a value will also
enable the mode.

	Parameters:

	
	value – new value

	only_on_change (bool) – will set/enable the mode only if value differs or the mode is disabled

	Returns:

	False if the value was not set, True otherwise

	
property value

	Returns the current value

Additional rule examples

Using the scheduler

from datetime import time, timedelta, datetime
from HABApp import Rule

class MyRule(Rule):

 def __init__(self):
 super().__init__()

 self.run.on_day_of_week(time=time(14, 34, 20), weekdays=['Mo'], callback=self.run_mondays)

 self.run.every(timedelta(seconds=5), 3, self.run_every_3s, 'arg 1', asdf='kwarg 1')

 self.run.on_workdays(time(15, 00), self.run_workdays)
 self.run.on_weekends(time(15, 00), self.run_weekends)

 def run_every_3s(self, arg, asdf = None):
 print(f'run_ever_3s: {datetime.now().replace(microsecond=0)} : {arg}, {asdf}')

 def run_mondays(self):
 print('Today is monday!')

 def run_workdays(self):
 print('Today is a workday!')

 def run_weekends(self):
 print('Finally weekend!')

MyRule()

Mirror openHAB events to a MQTT Broker

import HABApp
from HABApp.openhab.events import ItemStateUpdatedEventFilter, ItemStateEvent
from HABApp.openhab.items import OpenhabItem

class ExampleOpenhabToMQTTRule(HABApp.Rule):
 """This Rule mirrors all updates from OpenHAB to MQTT"""

 def __init__(self):
 super().__init__()

 for item in self.get_items(OpenhabItem):
 item.listen_event(self.process_update, ItemStateUpdatedEventFilter())

 def process_update(self, event):
 assert isinstance(event, ItemStateEvent)

 print(f'/openhab/{event.name} <- {event.value}')
 self.mqtt.publish(f'/openhab/{event.name}', str(event.value))

ExampleOpenhabToMQTTRule()

Trigger an event when an item is constant

Get an even when the item is constant for 5 and for 10 seconds.

import HABApp
from HABApp.core.items import Item
from HABApp.core.events import ItemNoChangeEvent, EventFilter

class MyRule(HABApp.Rule):
 def __init__(self):
 super().__init__()

 my_item = Item.get_item('test_watch')

 # Create an event when the item doesn't change for 5 secs and
 # create a watcher for ItemNoChangeEvent with 5s const time
 my_item.watch_change(5).listen_event(self.item_constant_5s)

 # Just create an event when the item doesn't change for 10 secs
 my_item.watch_change(10)

 # Listen to all ItemNoChangeEvents for the item
 my_item.listen_event(self.item_constant, EventFilter(ItemNoChangeEvent))

 # Set the item to a value to generate the ItemNoChangeEvent events
 my_item.set_value('my_value')

 def item_constant_5s(self, event):
 print(f'Item 5s const: {event}')

 def item_constant(self, event):
 print(f'Item const: {event}')

MyRule()

Item 5s const: <ItemNoChangeEvent name: test_watch, seconds: 5>
Item const: <ItemNoChangeEvent name: test_watch, seconds: 5>
Item const: <ItemNoChangeEvent name: test_watch, seconds: 10>

Turn something off after movement

Turn a device off 30 seconds after one of the movement sensors in a room signals movement.

import HABApp
from HABApp.core.items import Item
from HABApp.core.events import ValueUpdateEvent, ValueUpdateEventFilter

class MyCountdownRule(HABApp.Rule):
 def __init__(self):
 super().__init__()

 self.countdown = self.run.countdown(30, self.switch_off)
 self.device = Item.get_item('my_device')

 self.movement1 = Item.get_item('movement_sensor1')
 self.movement1.listen_event(self.movement, ValueUpdateEventFilter())

 self.movement2 = Item.get_item('movement_sensor2')
 self.movement2.listen_event(self.movement, ValueUpdateEventFilter())

 def movement(self, event: ValueUpdateEvent):
 if self.device != 'ON':
 self.device.post_value('ON')

 self.countdown.reset()

 def switch_off(self):
 self.device.post_value('OFF')

MyCountdownRule()

Process Errors in Rules

This example shows how to create a rule with a function which will be called when any rule throws an error.
The rule function then can push the error message to an openHAB item or e.g. use Pushover to send the error message
to the mobile device (see Advanced Usage for more information).

import HABApp
from HABApp.core.events.habapp_events import HABAppException
from HABApp.core.events import EventFilter

class NotifyOnError(HABApp.Rule):
 def __init__(self):
 super().__init__()

 # Listen to all errors
 self.listen_event('HABApp.Errors', self.on_error, EventFilter(HABAppException))

 def on_error(self, error_event: HABAppException):
 msg = error_event.to_str() if isinstance(error_event, HABAppException) else error_event
 print(msg)

NotifyOnError()

this is a faulty example. Do not create this part!
class FaultyRule(HABApp.Rule):
 def __init__(self):
 super().__init__()
 self.run.soon(self.faulty_function)

 def faulty_function(self):
 1 / 0
FaultyRule()

Exception in TestRule.FaultyRule.faulty_function: division by zero
File "<string>", line 31 in faulty_function
--

--
Traceback (most recent call last):
 File "/home/docs/checkouts/readthedocs.org/user_builds/habapp/checkouts/23.09.0/src/HABApp/core/internals/wrapped_function/wrapped_thread.py", line 94, in run
 self.func_obj(*self.func_args, **self.func_kwargs)
 File "<string>", line 31, in faulty_function
ZeroDivisionError: division by zero

Tips & Tricks

yml files

Entry sharing

If the values should be reused yml features anchors [https://en.wikipedia.org/wiki/YAML#Advanced_components]
with & which then can be referenced with *. This allows to reuse the defined structures:

my_key_value_pairs: &my_kv # <-- this creates the anchor node with the name my_kv
 4: 99 # Light Threshold
 5: 8 # Operation Mode
 7: 20 # Customer Function

value_1: *my_kv # <-- '*my_kv' references the anchor node my_kv
value_2: *my_kv

value_3:
 <<: *my_kv # <-- '<<: *my_kv' references and inserts the content (!) of the anchor node my_kv
 4: 80 # and then overwrites parameter 4

openHAB

autoupdate

If external devices are capable of reporting their state (e.g. Z-Wave) it is always advised to use disable autoupdate for these items.
This prevents openHAB from guessing the item state based on the command and forces it to use the actual reported value.
If in doubt if the device supports reporting their state it can be easily tested:
Set autoupdate to off, then watch the item state after sending a command to it.
If the state changes autoupdate can remain off.

In the *.items file autoupdate can be disabled by adding the following statement in the metadata field.

Number MyItem { channel = "zwave:my_zwave_link", autoupdate="false" }

It’s also possible with textual thing configuration to add it as metadata.

Troubleshooting

Warnings

Starting of <FUNC_NAME> took too long.

This warning appears in the HABApp log, e.g.:

Starting of MyRule.my_func took too long: 0.08s. Maybe there are not enough threads?

It means that the duration from when the event was received to the start of the execution of the function
took longer than expected.

This can be the case if suddenly many events are received at once.
Another reason for this warning might be that currently running function calls take too long to finish and thus no free
workers are available. This can either be the case for complex calculations,
but most of the time it’s blocking function calls or a time.sleep call.

If these warnings pile up in the log it’s an indicator that the worker is congested.
Make sure there is no use of long sleeps and instead the scheduler is used.

If this warning only appears now and then it can be ignored.

Execution of <FUNC_NAME> took too long

This warning appears in the HABApp log, e.g.:

Execution of MyRule.my_long_func took too long: 15.25s

It means that the function took very long to execute. By default HABApp has 10 threads and each function call
will happen in one of those threads. Normally this is not a problem because functions finish rather quicly
and the used thread is free for the next function call.
When functions take very long to execute and multiple of these functions run parallel it’s possible that
all threads are blocked. HABApp will then appear to “hang” and can not process new events.

If the function uses time.sleep it can be split up and the scheduler can be used instead.

Long running scripts (>10s) which do not interact with openHAB
can be run as a separate process with execute_python().
The script can e.g. print the result as a json which HABApp can read and load again into the proper data structures.

If this warning only appears now and then it can be ignored.

Item <ITEM_NAME> is a UoM item but “unit” is not found in item metadata

Starting from OH4 it’s possible to use an internal normalisation unit and scale for UoM items.
To use this normalisation one has to set the unit metadata on the item.:

Number:Temperature My_Temp { unit="°C" }

It’s strongly recommend to explicitly set this normalisation value.
Only when used it’ll prevent graphs and persisted values from changing the unit and scale
which would result in broken graphs or broken persisted data.

Errors

ValueError: Line is too long

The underlaying libraries of HABApp use a buffer to process each request and event from openHAB.
If the openHAB items contain images this buffer might be not enough and a ValueError: Line is too long
error will appear in the logs. See the openHAB connection options on how to increase
the buffer. The maximum image size that can be used without error is ~40% of the buffer size.

Class reference

Reference for returned classes from some functions.
These are not intended to be created by the user.

Watches

ItemNoUpdateWatch

	
class ItemNoUpdateWatch(name, secs)

	
	
EVENT

	alias of ItemNoUpdateEvent

	
cancel()

	Cancel the item watch

	
listen_event(callback)

	Listen to (only) the event that is emitted by this watcher

ItemNoChangeWatch

	
class ItemNoChangeWatch(name, secs)

	
	
EVENT

	alias of ItemNoChangeEvent

	
cancel()

	Cancel the item watch

	
listen_event(callback)

	Listen to (only) the event that is emitted by this watcher

Scheduler

OneTimeJob

	
class OneTimeJob(parent, func)

	
	
cancel()

	Cancel the job.

	
get_next_run()

	Return the next execution timestamp.

	Return type:

	datetime

	
remaining()

	Returns the remaining time to the next run or None if the job is not scheduled

	Return type:

	Optional[timedelta]

	Returns:

	remaining time as a timedelta or None

	
to_item(item)

	Sends the next execution (date)time to an item. Sends none if the job is not scheduled.

	Parameters:

	item (UnionType[str, BaseValueItem, None]) – item name or item, None to disable

CountdownJob

	
class CountdownJob(parent, func)

	
	
cancel()

	Cancel the job.

	
countdown(time)

	Set the time after which the job will be executed.

	Parameters:

	time (Union[timedelta, float, int]) – time

	Return type:

	CountdownJob

	
get_next_run()

	Return the next execution timestamp.

	Return type:

	datetime

	
remaining()

	Returns the remaining time to the next run or None if the job is not scheduled

	Return type:

	Optional[timedelta]

	Returns:

	remaining time as a timedelta or None

	
stop()

	Stops the countdown so it can be started again with a call to reset

	
to_item(item)

	Sends the next execution (date)time to an item. Sends none if the job is not scheduled.

	Parameters:

	item (UnionType[str, BaseValueItem, None]) – item name or item, None to disable

ReoccurringJob

	
class ReoccurringJob(parent, func)

	
	
boundary_func(func)

	Add a function which will be called when the datetime changes. Use this to implement custom boundaries.
Use None to disable the boundary function.

	Parameters:

	func (Optional[Callable[[datetime], datetime]]) – Function which returns a datetime obj, arg is a datetime with the next run time. Return
SKIP_EXECUTION together with a reoccurring job to skip the proposed run time.

	Return type:

	DateTimeJobBase

	
cancel()

	Cancel the job.

	
earliest(time_obj)

	Set earliest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run earlier

	Return type:

	DateTimeJobBase

	
get_next_run()

	Return the next execution timestamp.

	Return type:

	datetime

	
interval(interval)

	Set the interval at which the task will run.

	Parameters:

	interval (Union[int, float, timedelta]) – interval in secs or a timedelta obj

	Return type:

	ReoccurringJob

	
jitter(start, stop=None)

	Add a random jitter per call in the interval [start <= secs <= stop] to the next run.
If stop is omitted start must be positive and the interval will be [-start <= secs <= start]
Passing None as start will disable jitter.

	Parameters:

	
	start (Union[int, float, None]) – Interval start or None to disable jitter

	stop (Union[int, float, None]) – Interval stop or None to build interval based on start

	Return type:

	DateTimeJobBase

	
latest(time_obj)

	Set latest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run later

	Return type:

	DateTimeJobBase

	
offset(timedelta_obj)

	Set a constant offset to the calculation of the next run. None will disable the offset.

	Parameters:

	timedelta_obj (Optional[timedelta]) – constant offset

	Return type:

	DateTimeJobBase

	
remaining()

	Returns the remaining time to the next run or None if the job is not scheduled

	Return type:

	Optional[timedelta]

	Returns:

	remaining time as a timedelta or None

	
to_item(item)

	Sends the next execution (date)time to an item. Sends none if the job is not scheduled.

	Parameters:

	item (UnionType[str, BaseValueItem, None]) – item name or item, None to disable

DayOfWeekJob

	
class DayOfWeekJob(parent, func)

	
	
boundary_func(func)

	Add a function which will be called when the datetime changes. Use this to implement custom boundaries.
Use None to disable the boundary function.

	Parameters:

	func (Optional[Callable[[datetime], datetime]]) – Function which returns a datetime obj, arg is a datetime with the next run time. Return
SKIP_EXECUTION together with a reoccurring job to skip the proposed run time.

	Return type:

	DateTimeJobBase

	
cancel()

	Cancel the job.

	
earliest(time_obj)

	Set earliest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run earlier

	Return type:

	DateTimeJobBase

	
get_next_run()

	Return the next execution timestamp.

	Return type:

	datetime

	
jitter(start, stop=None)

	Add a random jitter per call in the interval [start <= secs <= stop] to the next run.
If stop is omitted start must be positive and the interval will be [-start <= secs <= start]
Passing None as start will disable jitter.

	Parameters:

	
	start (Union[int, float, None]) – Interval start or None to disable jitter

	stop (Union[int, float, None]) – Interval stop or None to build interval based on start

	Return type:

	DateTimeJobBase

	
latest(time_obj)

	Set latest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run later

	Return type:

	DateTimeJobBase

	
offset(timedelta_obj)

	Set a constant offset to the calculation of the next run. None will disable the offset.

	Parameters:

	timedelta_obj (Optional[timedelta]) – constant offset

	Return type:

	DateTimeJobBase

	
remaining()

	Returns the remaining time to the next run or None if the job is not scheduled

	Return type:

	Optional[timedelta]

	Returns:

	remaining time as a timedelta or None

	
time(time)

	Set a time of day when the job will run.

	Parameters:

	time (Union[time, datetime]) – time

	Return type:

	DayOfWeekJob

	
to_item(item)

	Sends the next execution (date)time to an item. Sends none if the job is not scheduled.

	Parameters:

	item (UnionType[str, BaseValueItem, None]) – item name or item, None to disable

	
weekdays(weekdays)

	Set the weekdays when the job will run.

	Parameters:

	weekdays (Union[str, Iterable[Union[str, int]]]) – Day group names (e.g. 'all', 'weekend', 'workdays'), an iterable with
day names (e.g. ['Mon', 'Fri']) or an iterable with the isoweekday values
(e.g. [1, 5]).

	Return type:

	DayOfWeekJob

DawnJob

	
class DawnJob(parent, func)

	
	
boundary_func(func)

	Add a function which will be called when the datetime changes. Use this to implement custom boundaries.
Use None to disable the boundary function.

	Parameters:

	func (Optional[Callable[[datetime], datetime]]) – Function which returns a datetime obj, arg is a datetime with the next run time. Return
SKIP_EXECUTION together with a reoccurring job to skip the proposed run time.

	Return type:

	DateTimeJobBase

	
cancel()

	Cancel the job.

	
earliest(time_obj)

	Set earliest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run earlier

	Return type:

	DateTimeJobBase

	
get_next_run()

	Return the next execution timestamp.

	Return type:

	datetime

	
jitter(start, stop=None)

	Add a random jitter per call in the interval [start <= secs <= stop] to the next run.
If stop is omitted start must be positive and the interval will be [-start <= secs <= start]
Passing None as start will disable jitter.

	Parameters:

	
	start (Union[int, float, None]) – Interval start or None to disable jitter

	stop (Union[int, float, None]) – Interval stop or None to build interval based on start

	Return type:

	DateTimeJobBase

	
latest(time_obj)

	Set latest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run later

	Return type:

	DateTimeJobBase

	
offset(timedelta_obj)

	Set a constant offset to the calculation of the next run. None will disable the offset.

	Parameters:

	timedelta_obj (Optional[timedelta]) – constant offset

	Return type:

	DateTimeJobBase

	
remaining()

	Returns the remaining time to the next run or None if the job is not scheduled

	Return type:

	Optional[timedelta]

	Returns:

	remaining time as a timedelta or None

	
to_item(item)

	Sends the next execution (date)time to an item. Sends none if the job is not scheduled.

	Parameters:

	item (UnionType[str, BaseValueItem, None]) – item name or item, None to disable

SunriseJob

	
class SunriseJob(parent, func)

	
	
boundary_func(func)

	Add a function which will be called when the datetime changes. Use this to implement custom boundaries.
Use None to disable the boundary function.

	Parameters:

	func (Optional[Callable[[datetime], datetime]]) – Function which returns a datetime obj, arg is a datetime with the next run time. Return
SKIP_EXECUTION together with a reoccurring job to skip the proposed run time.

	Return type:

	DateTimeJobBase

	
cancel()

	Cancel the job.

	
earliest(time_obj)

	Set earliest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run earlier

	Return type:

	DateTimeJobBase

	
get_next_run()

	Return the next execution timestamp.

	Return type:

	datetime

	
jitter(start, stop=None)

	Add a random jitter per call in the interval [start <= secs <= stop] to the next run.
If stop is omitted start must be positive and the interval will be [-start <= secs <= start]
Passing None as start will disable jitter.

	Parameters:

	
	start (Union[int, float, None]) – Interval start or None to disable jitter

	stop (Union[int, float, None]) – Interval stop or None to build interval based on start

	Return type:

	DateTimeJobBase

	
latest(time_obj)

	Set latest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run later

	Return type:

	DateTimeJobBase

	
offset(timedelta_obj)

	Set a constant offset to the calculation of the next run. None will disable the offset.

	Parameters:

	timedelta_obj (Optional[timedelta]) – constant offset

	Return type:

	DateTimeJobBase

	
remaining()

	Returns the remaining time to the next run or None if the job is not scheduled

	Return type:

	Optional[timedelta]

	Returns:

	remaining time as a timedelta or None

	
to_item(item)

	Sends the next execution (date)time to an item. Sends none if the job is not scheduled.

	Parameters:

	item (UnionType[str, BaseValueItem, None]) – item name or item, None to disable

SunsetJob

	
class SunsetJob(parent, func)

	
	
boundary_func(func)

	Add a function which will be called when the datetime changes. Use this to implement custom boundaries.
Use None to disable the boundary function.

	Parameters:

	func (Optional[Callable[[datetime], datetime]]) – Function which returns a datetime obj, arg is a datetime with the next run time. Return
SKIP_EXECUTION together with a reoccurring job to skip the proposed run time.

	Return type:

	DateTimeJobBase

	
cancel()

	Cancel the job.

	
earliest(time_obj)

	Set earliest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run earlier

	Return type:

	DateTimeJobBase

	
get_next_run()

	Return the next execution timestamp.

	Return type:

	datetime

	
jitter(start, stop=None)

	Add a random jitter per call in the interval [start <= secs <= stop] to the next run.
If stop is omitted start must be positive and the interval will be [-start <= secs <= start]
Passing None as start will disable jitter.

	Parameters:

	
	start (Union[int, float, None]) – Interval start or None to disable jitter

	stop (Union[int, float, None]) – Interval stop or None to build interval based on start

	Return type:

	DateTimeJobBase

	
latest(time_obj)

	Set latest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run later

	Return type:

	DateTimeJobBase

	
offset(timedelta_obj)

	Set a constant offset to the calculation of the next run. None will disable the offset.

	Parameters:

	timedelta_obj (Optional[timedelta]) – constant offset

	Return type:

	DateTimeJobBase

	
remaining()

	Returns the remaining time to the next run or None if the job is not scheduled

	Return type:

	Optional[timedelta]

	Returns:

	remaining time as a timedelta or None

	
to_item(item)

	Sends the next execution (date)time to an item. Sends none if the job is not scheduled.

	Parameters:

	item (UnionType[str, BaseValueItem, None]) – item name or item, None to disable

DuskJob

	
class DuskJob(parent, func)

	
	
boundary_func(func)

	Add a function which will be called when the datetime changes. Use this to implement custom boundaries.
Use None to disable the boundary function.

	Parameters:

	func (Optional[Callable[[datetime], datetime]]) – Function which returns a datetime obj, arg is a datetime with the next run time. Return
SKIP_EXECUTION together with a reoccurring job to skip the proposed run time.

	Return type:

	DateTimeJobBase

	
cancel()

	Cancel the job.

	
earliest(time_obj)

	Set earliest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run earlier

	Return type:

	DateTimeJobBase

	
get_next_run()

	Return the next execution timestamp.

	Return type:

	datetime

	
jitter(start, stop=None)

	Add a random jitter per call in the interval [start <= secs <= stop] to the next run.
If stop is omitted start must be positive and the interval will be [-start <= secs <= start]
Passing None as start will disable jitter.

	Parameters:

	
	start (Union[int, float, None]) – Interval start or None to disable jitter

	stop (Union[int, float, None]) – Interval stop or None to build interval based on start

	Return type:

	DateTimeJobBase

	
latest(time_obj)

	Set latest boundary as time of day. None will disable boundary.

	Parameters:

	time_obj (Optional[time]) – time obj, scheduler will not run later

	Return type:

	DateTimeJobBase

	
offset(timedelta_obj)

	Set a constant offset to the calculation of the next run. None will disable the offset.

	Parameters:

	timedelta_obj (Optional[timedelta]) – constant offset

	Return type:

	DateTimeJobBase

	
remaining()

	Returns the remaining time to the next run or None if the job is not scheduled

	Return type:

	Optional[timedelta]

	Returns:

	remaining time as a timedelta or None

	
to_item(item)

	Sends the next execution (date)time to an item. Sends none if the job is not scheduled.

	Parameters:

	item (UnionType[str, BaseValueItem, None]) – item name or item, None to disable

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 HABApp	

 	
 	
 HABApp.openhab.interface_sync	

 	
 	
 HABApp.rule.interfaces.http	

 	
 	
 HABApp.util	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	activate_listener() (EventListenerGroup method)

 	active (EventListenerGroup property)

 	add_listener() (EventListenerGroup method)

 	add_mode() (MultiModeItem method)

 	add_no_change_watcher() (EventListenerGroup method)

 	add_no_update_watcher() (EventListenerGroup method)

 	add_value() (Statistics method)

 	
 	aggregation_func() (AggregationItem method)

 	aggregation_period() (AggregationItem method)

 	aggregation_source() (AggregationItem method)

 	AggregationItem (class in HABApp.core.items)

 	all_modes() (MultiModeItem method)

 	AndFilterGroup (class in HABApp.core.events)

 	at() (HABAppSchedulerView method)

B

 	
 	b (HSB property)

 	(RGB property)

 	BaseValueItem (class in HABApp.core.items)

 	blue (RGB property)

 	boundary_func() (DawnJob method)

 	(DayOfWeekJob method)

 	(DuskJob method)

 	(ReoccurringJob method)

 	(SunriseJob method)

 	(SunsetJob method)

 	
 	brightness (HSB property)

 	buffer (Connection attribute)

C

 	
 	ca_cert (TLSSettings attribute)

 	calculate_value() (MultiModeItem method)

 	CallItem (class in HABApp.openhab.items)

 	cancel() (CountdownJob method)

 	(DawnJob method)

 	(DayOfWeekJob method)

 	(DuskJob method)

 	(EventListenerGroup method)

 	(ItemNoChangeWatch method)

 	(ItemNoUpdateWatch method)

 	(OneTimeJob method)

 	(ReoccurringJob method)

 	(SunriseJob method)

 	(SunsetJob method)

 	(SwitchItemValueMode method)

 	(ValueMode method)

 	
 	ChannelTriggeredEvent (class in HABApp.openhab.events)

 	client_id (Connection attribute)

 	closed() (ContactItem method)

 	ColorItem (class in HABApp.core.items)

 	(class in HABApp.openhab.items)

 	config (DirectoriesConfig attribute)

 	connection (MqttConfig attribute)

 	(OpenhabConfig attribute)

 	ContactItem (class in HABApp.openhab.items)

 	countdown() (CountdownJob method)

 	(HABAppSchedulerView method)

 	CountdownJob (class in eascheduler.scheduler_view)

 	create_item() (in module HABApp.openhab.interface_sync)

 	create_link() (in module HABApp.openhab.interface_sync)

D

 	
 	DatetimeItem (class in HABApp.openhab.items)

 	DawnJob (class in eascheduler.scheduler_view)

 	DayOfWeekJob (class in eascheduler.scheduler_view)

 	deactivate_listener() (EventListenerGroup method)

 	delete() (in module HABApp.rule.interfaces.http)

 	
 	DictParameter (class in HABApp.parameters)

 	DimmerItem (class in HABApp.openhab.items)

 	directories (ApplicationConfig attribute)

 	down() (RollershutterItem method)

 	DuskJob (class in eascheduler.scheduler_view)

E

 	
 	earliest() (DawnJob method)

 	(DayOfWeekJob method)

 	(DuskJob method)

 	(ReoccurringJob method)

 	(SunriseJob method)

 	(SunsetJob method)

 	elevation (LocationConfig attribute)

 	enabled (Ping attribute)

 	(SwitchItemValueMode property)

 	(ThreadPoolConfig attribute)

 	(TLSSettings attribute)

 	(ValueMode property)

 	
 	ensure_folder() (DirectoriesConfig class method)

 	EVENT (ItemNoChangeWatch attribute)

 	(ItemNoUpdateWatch attribute)

 	EventFilter (class in HABApp.core.events)

 	EventListenerGroup (class in HABApp.util)

 	every() (HABAppSchedulerView method)

 	every_hour() (HABAppSchedulerView method)

 	every_minute() (HABAppSchedulerView method)

 	execute_python() (Rule method)

 	execute_subprocess() (Rule method)

F

 	
 	Fade (class in HABApp.util)

 	FinishedProcessInfo (class in HABApp.rule)

 	
 	flush_every (LoggingConfig attribute)

 	from_hsb() (RGB class method)

 	from_rgb() (HSB class method)

G

 	
 	g (RGB property)

 	general (MqttConfig attribute)

 	(OpenhabConfig attribute)

 	get() (in module HABApp.rule.interfaces.http)

 	get_client_session() (in module HABApp.rule.interfaces.http)

 	get_create_item() (AggregationItem class method)

 	(ColorItem class method)

 	(Item class method)

 	(MqttItem class method)

 	(MqttPairItem class method)

 	(MultiModeItem class method)

 	get_item() (AggregationItem class method)

 	(BaseValueItem class method)

 	(CallItem class method)

 	(ColorItem class method), [1]

 	(ContactItem class method)

 	(DatetimeItem class method)

 	(DimmerItem class method)

 	(GroupItem class method)

 	(ImageItem class method)

 	(in module HABApp.openhab.interface_sync)

 	(Item class method)

 	(LocationItem class method)

 	(MqttItem class method)

 	(MqttPairItem class method)

 	(NumberItem class method)

 	(PlayerItem class method)

 	(RollershutterItem class method)

 	(StringItem class method)

 	(SwitchItem class method)

 	(Thing class method)

 	get_items() (Rule static method)

 	get_link() (in module HABApp.openhab.interface_sync)

 	get_mode() (MultiModeItem method)

 	get_next_run() (CountdownJob method)

 	(DawnJob method)

 	(DayOfWeekJob method)

 	(DuskJob method)

 	(OneTimeJob method)

 	(ReoccurringJob method)

 	(SunriseJob method)

 	(SunsetJob method)

 	
 	get_persistence_data() (CallItem method)

 	(ColorItem method)

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(in module HABApp.openhab.interface_sync)

 	(LocationItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	get_persistence_services() (in module HABApp.openhab.interface_sync)

 	get_rgb() (ColorItem method), [1]

 	get_thing() (in module HABApp.openhab.interface_sync)

 	get_value() (AggregationItem method)

 	(BaseValueItem method)

 	(CallItem method)

 	(ColorItem method), [1]

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(Fade method)

 	(GroupItem method)

 	(ImageItem method)

 	(Item method)

 	(LocationItem method)

 	(MqttItem method)

 	(MqttPairItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	green (RGB property)

 	GroupItem (class in HABApp.openhab.items)

 	GroupStateChangedEvent (class in HABApp.openhab.events)

H

 	
 	h (HSB property)

 	habapp (ApplicationConfig attribute)

 	
 HABApp.openhab.interface_sync

 	module

 	
 HABApp.rule.interfaces.http

 	module

 	
 HABApp.util

 	module

 	
 	HABAppException (class in HABApp.core.events.habapp_events)

 	HABAppSchedulerView (class in HABApp.rule.scheduler)

 	host (Connection attribute)

 	HSB (class in HABApp.core.types)

 	hsb_to_rgb() (in module HABApp.util.functions)

 	hue (HSB property)

I

 	
 	ImageItem (class in HABApp.openhab.items)

 	insecure (TLSSettings attribute)

 	interval (Ping attribute)

 	interval() (ReoccurringJob method)

 	is_closed() (ContactItem method)

 	is_down() (RollershutterItem method)

 	is_finished (Fade property)

 	is_off() (ColorItem method), [1]

 	(DimmerItem method)

 	(SwitchItem method)

 	is_on() (ColorItem method), [1]

 	(DimmerItem method)

 	(SwitchItem method)

 	is_open() (ContactItem method)

 	is_up() (RollershutterItem method)

 	Item (class in HABApp.core.items)

 	
 	item (Ping attribute)

 	item_exists() (in module HABApp.openhab.interface_sync)

 	ItemAddedEvent (class in HABApp.openhab.events)

 	ItemCommandEvent (class in HABApp.openhab.events)

 	ItemCommandEventFilter (class in HABApp.openhab.events)

 	ItemNoChangeEvent (class in HABApp.core.events)

 	ItemNoChangeWatch (class in HABApp.core.items.base_item_watch)

 	ItemNoUpdateEvent (class in HABApp.core.events)

 	ItemNoUpdateWatch (class in HABApp.core.items.base_item_watch)

 	ItemRemovedEvent (class in HABApp.openhab.events)

 	ItemStateChangedEvent (class in HABApp.openhab.events)

 	ItemStateChangedEventFilter (class in HABApp.openhab.events)

 	ItemStateEvent (class in HABApp.openhab.events)

 	ItemStatePredictedEvent (class in HABApp.openhab.events)

 	ItemStateUpdatedEventFilter (class in HABApp.openhab.events)

 	ItemUpdatedEvent (class in HABApp.openhab.events)

J

 	
 	jitter() (DawnJob method)

 	(DayOfWeekJob method)

 	(DuskJob method)

 	(ReoccurringJob method)

 	(SunriseJob method)

 	(SunsetJob method)

L

 	
 	last_change (AggregationItem property)

 	(BaseValueItem property)

 	(CallItem property)

 	(ColorItem property), [1]

 	(ContactItem property)

 	(DatetimeItem property)

 	(DimmerItem property)

 	(GroupItem property)

 	(ImageItem property)

 	(Item property)

 	(LocationItem property)

 	(MqttItem property)

 	(MqttPairItem property)

 	(NumberItem property)

 	(PlayerItem property)

 	(RollershutterItem property)

 	(StringItem property)

 	(SwitchItem property)

 	(Thing property)

 	last_update (AggregationItem property)

 	(BaseValueItem property)

 	(CallItem property)

 	(ColorItem property), [1]

 	(ContactItem property)

 	(DatetimeItem property)

 	(DimmerItem property)

 	(GroupItem property)

 	(ImageItem property)

 	(Item property)

 	(LocationItem property)

 	(MqttItem property)

 	(MqttPairItem property)

 	(NumberItem property)

 	(PlayerItem property)

 	(RollershutterItem property)

 	(StringItem property)

 	(SwitchItem property)

 	(Thing property)

 	
 	latest() (DawnJob method)

 	(DayOfWeekJob method)

 	(DuskJob method)

 	(ReoccurringJob method)

 	(SunriseJob method)

 	(SunsetJob method)

 	latitude (LocationConfig attribute)

 	lib (DirectoriesConfig attribute)

 	listen() (EventListenerGroup method)

 	listen_event() (AggregationItem method)

 	(BaseValueItem method)

 	(CallItem method)

 	(ColorItem method), [1]

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(Item method)

 	(ItemNoChangeWatch method)

 	(ItemNoUpdateWatch method)

 	(LocationItem method)

 	(MqttItem method)

 	(MqttPairItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(Rule method)

 	(StringItem method)

 	(SwitchItem method)

 	(Thing method)

 	listen_only (General attribute), [1]

 	location (ApplicationConfig attribute)

 	LocationItem (class in HABApp.openhab.items)

 	logging (DirectoriesConfig attribute)

 	(HABAppConfig attribute)

 	longitude (LocationConfig attribute)

M

 	
 	max() (in module HABApp.util.functions)

 	members (GroupItem property)

 	min() (in module HABApp.util.functions)

 	min_start_level (General attribute)

 	
 module

 	HABApp.openhab.interface_sync

 	HABApp.rule.interfaces.http

 	HABApp.util

 	
 	mqtt (ApplicationConfig attribute)

 	(built-in class)

 	MqttItem (class in HABApp.mqtt.items)

 	MqttPairItem (class in HABApp.mqtt.items)

 	MqttValueChangeEvent (class in HABApp.mqtt.events)

 	MqttValueUpdateEvent (class in HABApp.mqtt.events)

 	MultiModeItem (class in HABApp.util.multimode)

N

 	
 	name (AggregationItem property)

 	(BaseValueItem property)

 	(CallItem property)

 	(ColorItem property), [1]

 	(ContactItem property)

 	(DatetimeItem property)

 	(DimmerItem property)

 	(GroupItem property)

 	(ImageItem property)

 	(Item property)

 	(LocationItem property)

 	(MqttItem property)

 	(MqttPairItem property)

 	(NumberItem property)

 	(PlayerItem property)

 	(RollershutterItem property)

 	(StringItem property)

 	(SwitchItem property)

 	(Thing property)

 	
 	NoEventFilter (class in HABApp.core.events)

 	NumberItem (class in HABApp.openhab.items)

O

 	
 	off() (ColorItem method)

 	(DimmerItem method)

 	(SwitchItem method)

 	offset() (DawnJob method)

 	(DayOfWeekJob method)

 	(DuskJob method)

 	(ReoccurringJob method)

 	(SunriseJob method)

 	(SunsetJob method)

 	oh_post_update() (CallItem method)

 	(ColorItem method)

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(LocationItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	oh_post_update_if() (CallItem method)

 	(ColorItem method)

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(LocationItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	
 	oh_send_command() (CallItem method)

 	(ColorItem method)

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(LocationItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	on() (ColorItem method)

 	(DimmerItem method)

 	(SwitchItem method)

 	on_day_of_week() (HABAppSchedulerView method)

 	on_every_day() (HABAppSchedulerView method)

 	on_rule_loaded() (Rule method)

 	on_rule_removed() (Rule method)

 	on_sun_dawn() (HABAppSchedulerView method)

 	on_sun_dusk() (HABAppSchedulerView method)

 	on_sunrise() (HABAppSchedulerView method)

 	on_sunset() (HABAppSchedulerView method)

 	on_weekends() (HABAppSchedulerView method)

 	on_workdays() (HABAppSchedulerView method)

 	OneTimeJob (class in eascheduler.scheduler_view)

 	open() (ContactItem method)

 	openhab (ApplicationConfig attribute)

 	OrFilterGroup (class in HABApp.core.events)

P

 	
 	param (DirectoriesConfig attribute)

 	Parameter (class in HABApp.parameters)

 	password (Connection attribute), [1]

 	percent() (ColorItem method)

 	(DimmerItem method)

 	(RollershutterItem method)

 	ping (OpenhabConfig attribute)

 	PlayerItem (class in HABApp.openhab.items)

 	port (Connection attribute)

 	post() (in module HABApp.rule.interfaces.http)

 	post_event() (Rule method)

 	post_rgb() (ColorItem method), [1]

 	post_update() (in module HABApp.openhab.interface_sync)

 	post_value() (AggregationItem method)

 	(BaseValueItem method)

 	(CallItem method)

 	(ColorItem method), [1]

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(Item method)

 	(LocationItem method)

 	(MqttItem method)

 	(MqttPairItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	
 	post_value_if() (AggregationItem method)

 	(BaseValueItem method)

 	(CallItem method)

 	(ColorItem method), [1]

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(Item method)

 	(LocationItem method)

 	(MqttItem method)

 	(MqttPairItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	publish (MqttConfig attribute)

 	publish() (mqtt method)

 	(MqttItem method)

 	(MqttPairItem method)

 	put() (in module HABApp.rule.interfaces.http)

Q

 	
 	qos (Publish attribute)

 	(Subscribe attribute)

R

 	
 	r (RGB property)

 	red (RGB property)

 	remaining() (CountdownJob method)

 	(DawnJob method)

 	(DayOfWeekJob method)

 	(DuskJob method)

 	(OneTimeJob method)

 	(ReoccurringJob method)

 	(SunriseJob method)

 	(SunsetJob method)

 	remove_item() (in module HABApp.openhab.interface_sync)

 	remove_link() (in module HABApp.openhab.interface_sync)

 	
 	remove_metadata() (in module HABApp.openhab.interface_sync)

 	remove_mode() (MultiModeItem method)

 	ReoccurringJob (class in eascheduler.scheduler_view)

 	replace() (HSB method)

 	(RGB method)

 	RequestFileLoadEvent (class in HABApp.core.events.habapp_events)

 	RequestFileUnloadEvent (class in HABApp.core.events.habapp_events)

 	retain (Publish attribute)

 	RGB (class in HABApp.core.types)

 	rgb_to_hsb() (in module HABApp.util.functions)

 	RollershutterItem (class in HABApp.openhab.items)

 	Rule (class in HABApp)

 	rules (DirectoriesConfig attribute)

S

 	
 	s (HSB property)

 	saturation (HSB property)

 	schedule_fade() (Fade method)

 	send_command() (in module HABApp.openhab.interface_sync)

 	set_enabled() (Thing method)

 	(ValueMode method)

 	set_file_validator() (in module HABApp.parameters)

 	set_metadata() (in module HABApp.openhab.interface_sync)

 	set_persistence_data() (in module HABApp.openhab.interface_sync)

 	set_rgb() (ColorItem method), [1]

 	set_thing_enabled() (in module HABApp.openhab.interface_sync)

 	set_value() (AggregationItem method)

 	(BaseValueItem method)

 	(CallItem method)

 	(ColorItem method), [1]

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(Item method)

 	(LocationItem method)

 	(MqttItem method)

 	(MqttPairItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	(SwitchItemValueMode method)

 	(ValueMode method)

 	
 	setup() (Fade method)

 	soon() (HABAppSchedulerView method)

 	Statistics (class in HABApp.util)

 	stop() (CountdownJob method)

 	stop_fade() (Fade method)

 	StringItem (class in HABApp.openhab.items)

 	subscribe (MqttConfig attribute)

 	subscribe() (mqtt method)

 	SunriseJob (class in eascheduler.scheduler_view)

 	SunsetJob (class in eascheduler.scheduler_view)

 	SwitchItem (class in HABApp.openhab.items)

 	SwitchItemValueMode (class in HABApp.util.multimode)

T

 	
 	Thing (class in HABApp.openhab.items)

 	ThingAddedEvent (class in HABApp.openhab.events)

 	ThingFirmwareStatusInfoEvent (class in HABApp.openhab.events)

 	ThingRemovedEvent (class in HABApp.openhab.events)

 	ThingStatusInfoChangedEvent (class in HABApp.openhab.events)

 	ThingStatusInfoEvent (class in HABApp.openhab.events)

 	ThingUpdatedEvent (class in HABApp.openhab.events)

 	thread_pool (HABAppConfig attribute)

 	threads (ThreadPoolConfig attribute)

 	time() (DayOfWeekJob method)

 	tls (Connection attribute)

 	to_hsb() (RGB method)

 	
 	to_item() (CountdownJob method)

 	(DawnJob method)

 	(DayOfWeekJob method)

 	(DuskJob method)

 	(OneTimeJob method)

 	(ReoccurringJob method)

 	(SunriseJob method)

 	(SunsetJob method)

 	to_rgb() (HSB method)

 	to_str() (HABAppException method)

 	topic_filter (Connection attribute)

 	topics (Subscribe attribute)

U

 	
 	unit (NumberItem property)

 	unsubscribe() (mqtt method)

 	up() (RollershutterItem method)

 	
 	update() (Statistics method)

 	url (Connection attribute)

 	use_buffer (LoggingConfig attribute)

 	user (Connection attribute), [1]

V

 	
 	value (DictParameter property)

 	(Parameter property)

 	(SwitchItemValueMode property)

 	(ValueMode property)

 	ValueChangeEvent (class in HABApp.core.events)

 	
 	ValueChangeEventFilter (class in HABApp.core.events)

 	ValueMode (class in HABApp.util.multimode)

 	ValueUpdateEvent (class in HABApp.core.events)

 	ValueUpdateEventFilter (class in HABApp.core.events)

 	verify_ssl (Connection attribute)

W

 	
 	wait_for_openhab (General attribute)

 	watch_change() (AggregationItem method)

 	(BaseValueItem method)

 	(CallItem method)

 	(ColorItem method), [1]

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(Item method)

 	(LocationItem method)

 	(MqttItem method)

 	(MqttPairItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	(Thing method)

 	
 	watch_update() (AggregationItem method)

 	(BaseValueItem method)

 	(CallItem method)

 	(ColorItem method), [1]

 	(ContactItem method)

 	(DatetimeItem method)

 	(DimmerItem method)

 	(GroupItem method)

 	(ImageItem method)

 	(Item method)

 	(LocationItem method)

 	(MqttItem method)

 	(MqttPairItem method)

 	(NumberItem method)

 	(PlayerItem method)

 	(RollershutterItem method)

 	(StringItem method)

 	(SwitchItem method)

 	(Thing method)

 	weekdays() (DayOfWeekJob method)

 _images/inheritance-aa147d3fc9bc7546c02f26c918120cb5c7353803.png
ItemRegistryltem

Baseltem

Thing

_images/inheritance-ac34627743ebf284c778fa57cb69c4d35519a1fe.png
OpenhabEvent

GroupStateChangedEvent

ValueChangeEvent

_images/inheritance-a31fdb3289cf2f7fba303770e726710efcfa74bf.png
ValueUpdateEvent

_images/inheritance-a8a08b578d39a1e287da80140179f42e59b642f7.png
onoffcommand

Switchitem

ItemRegistryltem

Baseltem

Basevalueltem

Openhabitem

_images/inheritance-c7222fd0b5c3bd547408f37ee162f6d6764afb30.png
OpenhabEvent

+

ItemUpdatedEvent

_images/inheritance-cb341f43afd0e835e3f6ef4a5b1c2ee064ef70c5.png
OpenhabEvent

ThingFirmwareStatusinfoEvent

_images/inheritance-b75312955727963c9890868ea4ab3233b4486821.png
ItemRegistryltem

Baseltem

Basevalueltem

Openhablitem

» Locationitem

_images/inheritance-bad6ca4766e3a9065bcce69938d9cf410cd0b997.png
EventFilterBase

EventFilter

v

TypeBoundeventrilter

+f temstateUpdatedeventrilter

_images/inheritance-cbbc08dd8c0bc21dbc2743ea0465653280d31638.png
EventFilterBase

EventFilter

v

TypeBoundeventrilter

o temstateChangedeventFilter

_images/inheritance-ccd68d88ae586bee26cac6b41ad44444ac1df40d.png
ItemRegistryltem

Baseltem

Basevalueltem

Openhablitem

»| Contactitem

_images/inheritance-decd46e741a63a4e1c4343523b198103ae84cc64.png
ItemRegistryltem

Baseltem

Basevalueltem

v

MattBaseltem

» Mgttpairitem

_images/architecture.png
HABApp

openHAB

Items

HABApp items

Event Bus

HABApp events

0

MQTT

Y

Y

» openHAB items
» openHAB events
> MQTT items
»| MQTT events
/\\
N

Rules

_images/inheritance-df816c6d15ea5b352add641db705761538cb0566.png
ItemNoUpdateEvent

nav.xhtml

 Table of Contents

 		
 Welcome to the HABApp documentation!

 		
 Installation & Usage

 		
 Virtual environment

 		
 Installation

 		
 Upgrading

 		
 Autostart after reboot

 		
 Error message while installing ujson

 		
 Error message while installing ruamel.yaml

 		
 Docker

 		
 Image installation

 		
 Running image from command line

 		
 Updating image from command line

 		
 Updating image on Synology

 		
 Additional python libraries

 		
 Upgrading to a newer version of HABApp

 		
 Command line arguments

 		
 Usage with PyCharm

 		
 Type hints and checks

 		
 Start HABApp from PyCharm

 		
 Install a development version of HABApp

 		
 About HABApp

 		
 About

 		
 HABApp architecture

 		
 HABApp folder structure

 		
 Integration with openHAB

 		
 Integration with MQTT

 		
 Configuration

 		
 Description

 		
 Example

 		
 Configuration Reference

 		
 ApplicationConfig

 		
 Directories

 		
 Location

 		
 MQTT

 		
 Openhab

 		
 HABApp

 		
 Getting Started

 		
 First rule

 		
 A more generic rule

 		
 Interacting with items

 		
 Access

 		
 Values

 		
 Timestamps

 		
 Watch items for events

 		
 Trigger an event when an item is constant

 		
 Convenience functions

 		
 post_value_if

 		
 Logging

 		
 Configuration

 		
 Example

 		
 Usage

 		
 Full Example configuration

 		
 Custom log levels

 		
 Logging to stdout

 		
 Add custom filters to loggers

 		
 Rule

 		
 Interacting with items

 		
 Interacting with events

 		
 NoEventFilter

 		
 EventFilter

 		
 ValueUpdateEventFilter

 		
 ValueChangeEventFilter

 		
 AndFilterGroup

 		
 OrFilterGroup

 		
 Example

 		
 Scheduler

 		
 HABAppSchedulerView

 		
 Other tools and scripts

 		
 Running tools

 		
 Running python scripts or modules

 		
 FinishedProcessInfo

 		
 How to properly use rules from other rule files

 		
 All available functions

 		
 Rule

 		
 Parameters

 		
 Parameters

 		
 Validation

 		
 set_file_validator()

 		
 Create rules from Parameters

 		
 Parameter classes

 		
 Parameter

 		
 DictParameter

 		
 HABApp

 		
 Datatypes

 		
 RGB

 		
 HSB

 		
 Items

 		
 Item

 		
 ColorItem

 		
 AggregationItem

 		
 BaseValueItem

 		
 Events

 		
 ValueUpdateEvent

 		
 ValueChangeEvent

 		
 ItemNoUpdateEvent

 		
 ItemNoChangeEvent

 		
 openHAB

 		
 Additional configuration

 		
 Textual configuration

 		
 GUI

 		
 openHAB item types

 		
 Description and example

 		
 NumberItem

 		
 ContactItem

 		
 SwitchItem

 		
 DimmerItem

 		
 DatetimeItem

 		
 RollershutterItem

 		
 ColorItem

 		
 StringItem

 		
 LocationItem

 		
 PlayerItem

 		
 GroupItem

 		
 ImageItem

 		
 CallItem

 		
 Thing

 		
 Interaction with a openHAB

 		
 Function parameters

 		
 openHAB event types

 		
 Item events

 		
 Channel events

 		
 Thing events

 		
 Event filters

 		
 Transformations

 		
 map

 		
 Textual thing configuration

 		
 Description

 		
 Principle of operation

 		
 File Structure

 		
 Thing configuration

 		
 Item configuration

 		
 Fields

 		
 Example

 		
 Example openHAB rules

 		
 Example 1

 		
 Check status of things

 		
 Check status if thing is constant

 		
 MQTT

 		
 Interaction with the MQTT broker

 		
 Rule Interface

 		
 mqtt

 		
 Mqtt item types

 		
 MqttItem

 		
 MqttPairItem

 		
 Mqtt event types

 		
 MqttValueUpdateEvent

 		
 MqttValueChangeEvent

 		
 Example MQTT rule

 		
 Advanced Usage

 		
 HABApp Topics

 		
 RequestFileLoadEvent

 		
 RequestFileUnloadEvent

 		
 HABAppException

 		
 File properties

 		
 Running Python code on startup

 		
 Invoking openHAB actions

 		
 Mocking openHAB items and events for tests

 		
 asyncio

 		
 async http

 		
 Functions

 		
 Examples

 		
 util - helpers and utilities

 		
 Functions

 		
 min

 		
 max

 		
 rgb_to_hsb

 		
 hsb_to_rgb

 		
 Statistics

 		
 Example

 		
 Documentation

 		
 Fade

 		
 Example

 		
 Documentation

 		
 EventListenerGroup

 		
 Example

 		
 Documentation

 		
 MultiModeItem

 		
 Basic Example

 		
 Advanced Example

 		
 Example SwitchItemValueMode

 		
 Documentation

 		
 Additional rule examples

 		
 Using the scheduler

 		
 Mirror openHAB events to a MQTT Broker

 		
 Trigger an event when an item is constant

 		
 Turn something off after movement

 		
 Process Errors in Rules

 		
 Tips & Tricks

 		
 yml files

 		
 Entry sharing

 		
 openHAB

 		
 autoupdate

 		
 Troubleshooting

 		
 Warnings

 		
 Starting of <FUNC_NAME> took too long.

 		
 Execution of <FUNC_NAME> took too long

 		
 Item <ITEM_NAME> is a UoM item but â��unitâ�� is not found in item metadata

 		
 Errors

 		
 ValueError: Line is too long

 		
 Class reference

 		
 Watches

 		
 ItemNoUpdateWatch

 		
 ItemNoChangeWatch

 		
 Scheduler

 		
 OneTimeJob

 		
 CountdownJob

 		
 ReoccurringJob

 		
 DayOfWeekJob

 		
 DawnJob

 		
 SunriseJob

 		
 SunsetJob

 		
 DuskJob

_images/inheritance-d3b8f5147f6eedea7cede583d7ecb47d3cc6a69d.png
OpenhabEvent

v

ThingStatusinfoChangedEvent

_images/inheritance-d6162edcaa0b90882fc4ff0dfd0cc11363c0130e.png
ItemRegistryltem

Baseltem

Basevalueltem

Openhablitem

»| Datetimeltem

_images/inheritance-042793bd6d852cf8d0cb00d915b84ecb92d5e604.png
OpenhabEvent

ChannelTriggeredevent

_images/openhab.gif

_images/inheritance-069036fe990cbf879e682ce0eef3163b417d4e75.png
ItemRegistryltem

Baseltem

Basevalueltem

v

MattBaseltem

+ Mgttitem

_images/openhab_api_config.png
Show advanced

Allow Basic Authentication —_—

Allow the use of Basic authentication to access protected API resources, in adition
to access tokens and APl tokens.

Cache Expiration Time.
6

When basic authentication is activated, credentials are put in a cache in order to
speed up request authorization. The entries in the cache expire after a while in

order to not keep credentials in memory indefinitely. This value defines the

_images/folders.png

_images/inheritance-f400c59d98386153438eae4224407aabd0a74269.png
ItemNoChangeEvent

_images/inheritance-03253a00b77125d12fd99b73d1e6fcec18e990f2.png
onoffcommand

PercentCommand j Dimmeritem

ItemRegistryltem .(Baseltem +f Basevalueltem + Openhabitem

_images/mqtt.gif

_images/inheritance-1cb5b658415227795ae5a7cc7714d68de2630570.png
OpenhabEvent

™ ItemstateEvent

ValueUpdateEvent

_images/inheritance-21d798137b51ff1a4260f31e251e01c3a4a97a6b.png
ItemRegistryltem

Baseltem

Basevalueltem

Item

_images/inheritance-143b74a1401b602920c6c5ba3c5845465858788f.png
OpenhabEvent |

ValueChangeEvent

_images/pycharm_run.png
&~ | Add Confi aew

_images/inheritance-19738a1bc40fc9a740701143e8e66dc5693692df.png
ValueUpdateEvent o MqttvalueUpdateEvent

_images/inheritance-23669419b48e57090d12e53ebc5f1738e3aa6b19.png
OpenhabEvent

]

ThingRegistryBaseEvent

o ThingRemovedevent

_images/inheritance-d1aa33680b62405910646e481debe56c4058973d.png
ItemRegistryltem

Baseltem

Basevalueltem

Coloritem

_images/inheritance-2b5c20c53804f45f3f6598822db3ba5b85ed586b.png
ValueChangeEvent

MattvalueChangeEvent

_images/inheritance-379332e8f03551b4faf64eff92447083a465b9a5.png
OpenhabEvent

ItemAddedEvent

_images/pycharm_settings_install.png
> Version Control

Project Structure

> Tools

~ Project: HABAppTutorial

> Build, Execution, Deployment
> Languages & Frameworks

Project: HABAppTutorial > Python Interpreter =

Python nteprete: | @ Python 310

+ °
P Version
pip 2112
setuptools 5700
wheel 0362

Latest version
a3
- 6050
0371

Apply

_images/inheritance-42651eb1cf23d60a6e0251424c7795ce3bc4d3ad.png
OpenhabEvent

ItemStatePredictedEvent

_static/file.png

_images/inheritance-4762495973bb10444e8acecdcd6faa3c6abb192d.png
ItemRegistryltem

Baseltem

Basevalueltem

Openhablitem

+| Groupitem

_images/inheritance-3bee71e7cdd185083075e5d6a20bda0bccc00312.png
OpenhabEvent

ItemRemovedEvent

_images/inheritance-3fd72f5e739a677796dac6723878e1e21223c83e.png
ItemRegistryltem

Baseltem

Basevalueltem

_images/inheritance-5600038317c005359b71359e676485d5170c2fb0.png
ItemRegistryltem

Baseltem

Basevalueltem

v

Aggregationitem

_images/inheritance-5962abc2c2154b343663dcb93fd5401c74638de2.png
ItemRegistryltem

Baseltem

Basevalueltem

Openhablitem

o callitem

_images/inheritance-4813cdc7819ec5300624e980067eacc893336e57.png
ItemRegistryltem

Baseltem

Basevalueltem

Openhablitem

» Stringitem

_images/inheritance-48d4a865f05563724b1a61cc1b07ce0f7ac059e9.png
OpenhabEvent

]

ThingRegistryBaseEvent

o ThingUpdatedevent

_images/pycharm_run_settings.png
Run/Debug Configurations
+ - B
@ Python

Edit configuration templates..

B

Neme: | HABApP (] Allow parallel run

Configuration Logs.

Module name: -

—y

v Environment

HABApp.

-c PATH_TO_CONFIG

Environment variables: | PYTHONUNBUFFERED=1
Python interpreter: @ Python 3.10
Interpreter options:

Working directory:

(V] Add content roots to PYTHONPATH
(V] Add source roots to PYTHONPATH

v Exccution
[] Emulate termina in output console
(] Run with Python Console

7 Redirect inout from:

] Store as project file

Apply

_images/pycharm_settings.png
. dit View Navigate Code Refactor Run Tools VCS W
B NewProject..

New... Alt+Einfg
NewScratchFile Strg= Alt+Umschalt+Einfg.

% Open.

Structure,

Save As.
Open Recent >
Close Project

Close All Projects

Close Other Projects

Rename Project...

File Properties >

Local History >

H save Al Strges
'S Reload All from Disk Strg+AltsY.

_images/inheritance-616e1e6c9d0667e999e1079d52f72353cc11e1e7.png
ItemRegistryltem

Baseltem

Basevalueltem

Openhablitem

+ imageitem

_images/inheritance-69a362bb195e9cd768c1209705f16821160e1875.png
ItemRegistryltem

Baseltem

Basevalueltem

Openhablitem

»/ Numberitem

_images/inheritance-614245544fad35d3567e3a7965225854b619272b.png
EventFilterBase

EventFilter

v

TypeBoundeventrilter

» itemCommandeventFilter

_images/inheritance-815edef0530a0ea925d4867696bd43f4a2d6bfc3.png
OpenhabEvent

ItemCommandEvent

_images/inheritance-82ce3909fec340d8dbce70f5cb85b1cb43dbc427.png
ValueChangeEvent

_images/inheritance-74f1efa30c20c0263c6803955b9c2c9db03057f0.png
onoffcommand

PercentCommand

Coloritem

ItemRegistryltem

Baseltem

Basevalueltem

| openhabitem

_images/inheritance-7e820e6e423bb5f35d75883c84f14e208194f3e8.png
OpenhabEvent

]

ThingRegistryBaseEvent

o ThingAddedEvent

_images/inheritance-97ea2a10ed83868171369639c7e781dbf31b2810.png
PercentCommand

UpDownCommand

ItemRegistryltem

Baseltem

BaseValueltem

+

Openhabitem

_images/inheritance-8b1826e9e780ae07c327cff25e46be010ff7fc07.png
ItemRegistryltem

Baseltem

Basevalueltem

Openhablitem

o Playeritem

_images/inheritance-9574c82c4280af920a7aba47bc35346b3e4b2759.png
OpenhabEvent

]

ThingStatusinfoEvent

_static/plus.png

_static/minus.png

